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ABSTRACT 

Conventional implementations of collective communications are based on point-to-point 

communications, and their optimizations have been focused on efficiency of those communi­

cation algorithms. However, point-to-point communications are not the optimal choice for 

modern computing clusters of SMPs due to their two-level communication structure. In recent 

years, a few research efforts have investigated efficient collective communications for SMP clus­

ters. This dissertation is focused on platform-independent algorithms and implementations in 

this area. 

There are two main approaches to implementing efficient collective communications for 

clusters of SMPs: using shared memory operations for intra-node communications, and over­

lapping inter-node/intra-node communications. The former fully utilizes the hardware based 

shared memory of an SMP, and the latter takes advantage of the inherent hierarchy of the 

communications within a cluster of SMPs. Previous studies focused on clusters of SMP from 

certain vendors. However, the previously proposed methods are not portable to other sys­

tems. Because the performance optimization issue is very complicated and the developing 

process is very time consuming, it is highly desired to have self-tuning, platform-independent 

implementations. As proven in this dissertation, such an implementation can significantly out­

perform the other point-to-point based portable implementations and some platform-specific 

implementations. 

The dissertation describes in detail the architecture of the platform-independent implemen­

tation. There are four system components: shared memory-based collective communications, 

overlapping mechanisms for inter-node and intra-node communications, a prediction-based 

tuning module and a micro-benchmark based tuning module. Each component is carefully 
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designed with the goal of automatic tuning in mind. 
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CHAPTER 1. INTRODUCTION 

1.1 Overview 

Message passing is the de-facto standard for many parallel applications. The primary mes­

sage passing library (MPL) in wide use today is based on the message passing interface (MPI) 

standard [28]. Message passing applications spend a significant amount of time in communi­

cations, including point-to-point communications, collective communications and synchroniza­

tions. A profiling study [38] showed that parallel applications spend more than eighty percent 

of transfer time in collective communications. The result suggests that optimizing collective 

communications is crucial for real world parallel applications, especially for communication 

intensive applications. 

In general, developers assume a flat communication architecture for data exchange, e.g. the 

network is fully connected with equal bandwidth among any pair of nodes. However, modern 

computing systems have complex, hierarchical communication structures for which no single 

communications algorithm works well unconditionally. This has forced application developers 

to implement multiple versions of their programs so that they may adapt to various systems. 

In some cases, application developers optimize their program for one system, but the programs 

are adapted to another system of a very different hardware architecture. To maintain the 

productivity of programmers and end users, it is desirable to have portable implementations of 

the MPI library that hide the complexity of the underlying hardware. Such an implementation 

must be capable of automatic tuning to couple with the large tuning space of modern hardware 

architecture. 

One would expect that vendor implementations of MPI libraries should give the best per­

formance. This is not always true, as shown in our experimental results. Surprisingly even 
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vendors have trouble supporting all of their own infrastructures. Consider the varieties in the 

IBM SP system series. The architecture of some new generations of SP systems is very different 

from the previous ones. In this case, vendors may support highly efficient implementations for 

a few platforms, but in general the implementations are sub-optimal. 

Portable MPI implementations, such as MPICH or LAM/MPI [74], are another choice 

for developers on those architectures. As those portable implementations must support a wide 

range of target systems, which have an almost infinite combination of interconnection strategies 

and network software stacks, they cannot be hand-tuned to the extent of the vendor versions. 

These libraries typically support the set of algorithms that give the best average performance. 

In short, application developers or end users cannot be expected to manually tune either 

their applications or the underlying MPI systems to fully exploit the available computational 

power and network capabilities. These problems motivate the need for a system that can 

automatically select the best available implementations and their configuration for optimal 

performance on a given set of hardware and software resources. 

The goal of automatic tuning collective libraries is to provide mechanisms where optimal 

communication algorithms can be selected by the system rather than hand tuned by the MPL 

users. Such a system must have a good set of implementations and tuning mechanisms to 

select the right implementation and produce the optimal configuration for a given computa­

tional resource. The existing approaches assume that each node has only one processor, and 

communications are inter-node, point-to-point communications; the collective communications 

and tuning mechanisms are all developed based on this "one processor per node" assumption. 

However, when a cluster is composed of SMP nodes, the complexity of designing automatically 

tuned collective libraries increases by more than one dimension. Point-to-point communication 

is no longer the best communication mechanism, since the SMP architecture provides shared 

memory for communications within an SMP node. Programming models to design collective 

communications on SMP architectures must be defined and interactions between communi­

cation layers must be identified in order to design tuning mechanisms. The characteristics 

and performance model of collective communications on SMP clusters must be developed to 
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provide predictions and to determine appropriate algorithmic choices. Those problems must 

first be solved in order to build an automatic tuning systems for SMP clusters. 

Given the fact that many systems in the top 500 list [75] are SMP clusters, we expect 

research that addresses these issues to provide a foundation to design a practical automatic 

tuning system for collective communications on SMP clusters and will be a significant contri­

bution to the community. 

1.2 Parallel Architectures and Clusters 

Parallel computing technologies have allowed the peak speeds of high-end supercomputers 

to grow at a rate that has exceeded Moore's Law, and improving the computing power of 

parallel systems has been a major research topic for decades. Although parallel computers 

provide much high computation power than desktop computers, the cost of a propriety parallel 

computer is usually very high and is affordable only to major companies and government or 

academic research institutes. As an alternative to propriety parallel computers, building cluster 

computing systems is a cost-effective alternative for increased computational power. 

In the last few years, cluster computing technologies have advanced to the extent that a 

cluster can be easily constructed using heterogeneous compute nodes, running an arbitrary 

operation system, and connected by different kinds of networks. This makes it possible for 

most research laboratories and universities to have their own cluster computing systems. Any 

university department or research laboratory can now build their own clusters that meet their 

computational demands. 

There is no precise definition of cluster. "The term cluster, can be applied both broadly 

(any system built with a significant number of commodity components) or narrowly (only 

commodity components and open source software)" [89]. We use the broad definition of cluster 

in this dissertation. Different kinds of parallel computing systems are discussed in this section. 
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Memoi'\ Memnrv Memon 

Figure 1.1 Block diagram of a distributed memory system. 

1.2.1 Distributed Memory Systems 

From a hardware perspective, the simplest approach to construct a parallel computing sys­

tem is the distributed memory model. In this approach, separate compute nodes are connected 

by a network; each compute node has its own memory, CPU, network interface card (NIC), 

Operating System, etc. This type of system is the most common parallel computer systems 

since they are easy to assemble. Figure 1.1 depicts the basic building blocks of a distributed 

memory system. The propriety distributed systems such as IBM SP, Cray T3D or T3E may 

have special-purpose hardware and the cost of those systems are usually very high. 

There are several projects that exploit the use of the low cost and high performance of com­

modity microprocessors to build distributed memory systems (sometimes refereed as NOWs, 

networks of workstations). The most famous are Beowulf clusters [90, 91], which are built from 

commodity parts and two of them reached top 100 supercomputer systems in 2000. 

The communications between compute nodes is done through the interconnection network; 

one processor sends its message through the NIC (Network Interface Card) into the intercon­

nection network, then another processor receives the message from the interconnection network 

via the NIC. Figure 1.2 shows the communications through the interconnection network be­

tween compute nodes, one node sends three messages to three nodes. 
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send receive 

Processors 

Figure 1.2 Communications through intercommunication network. 

1.2.2 High Performance Interconnection Network 

The interconnection network is a critical component of the computing technologies. Al­

though the computational speed distinguishes high-performance computers from desktop sys­

tems, the efficient, integration of compute nodes with interconnection networks also has a 

significant impact on the overall performance of parallel applications. 

The interconnect, networks commonly used in high performance computers include Gigabit, 

Ethernet, [53, 54], Myrinet [47], Quadrics [41, 42], and Infiniband [43]. Each provides a certain 

level of progranimability, raw performance and the integration with the operation system. For 

example, InfiniBand provides multi-casting; Quadrics can utilize shared memory for collective 

communications. Since every high performance network has certain strengths of its own, 

utilizing a certain characterist ic of a high performance network for communications is also an 

important research topic [40, 44, 45, 46, 48, 49, 50, 51, 52, ?]. 

1.2.3 Shared Memory Systems 

In a shared memory system, the memory is placed into a single physical address space and 

supporting virtual address spaces across all of the memory. Figure 1.3 depicts the diagram 

of a shared memory system. Data in a shared memory system are available to all of the 

CPUs through load and store instructions. Because access to memory is not through network 

operations as in distributed memory systems, the latency to access memory is much lower. 

However, one major problem with shared memory system is cache coherence. Each CPU has 
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Memory I Memory I Memory I Memor_\ 

Figure 1.3 Block diagram of a shared memory system. 

Memory 

Write ri l Read 

1 i i 

Processors 

Figure 1.4 Communications through shared memory within an SMP node. 

its own cache, and the mechanisms to keep data coherent in bot h cache and shared memory 

(as if cache were not present) may require additional hardware and can hinder application 

performance. There are two major types of shared memory machines; uniform memory access 

(UMA) and cache coherent nonuniform memory access (CC-NUMA) [89]. 

Shared memory systems usually have quite modest memory bandwidths. However, with 

the increase of processors in a shared memory system, some processor may be starved for 

bandwidth. "Applications that are memory-access bound can even slow as processors are 

added in such systems" [89]. For a low to medium end shared memory system, there are 

usually 2 to 16 processors in a system. A high-end system may have more than one hundred 

processors. 
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M e m n r v  

Figure 1.5 Block diagram of an SMP cluster. 

For communications between the processors within the same compute node (intra-node 

communications), if they are processed through the interconnection network, there is no dif­

ference from the communications between SMP nodes. The communications can also be pro­

cessed through shared memory, as shown in figure 1.4. Once a process writes data into shared 

memory, all the other processes can read that data concurrently. However, this approach for 

communications has its limitation; with the increase of number of processors, without careful 

coordination, the bus can become the performance bott leneck and the cost of cache coherence 

will increase. 

1.2.4 The Architecture of SMP Clusters 

Figure 1.5 depicts an SMP cluster in the most generic form. Compute nodes are connected 

through an interconnection network. Within an SMP node a shared system bus connects 

the memory with processors, serving as the medium for intra-node communications. The 

inter-node connection is a collection of links and switches that provide a network for all the 

nodes in the cluster. If an SMP node is an MPP (massively parallel processor) node, the 

communication between an SMP processor and the interconnection network are through a 

communication assist (CA). The communication assist acts as another CPU that is dedicated 

to handle communications. If an SMP node is a workstation, the communications from an 

SMP processor to the interconnection are a through network interface card (NIC). 
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The SMP architecture adds the hierarchical characteristic into the cluster environments, 

not only in the memory subsystem but also in the communication subsystem. For the memory 

system, there is remote memory (memory on anot her SMP node) and local memory (memory 

within an SMP node) as in any kind of clusters. For communications, there are inter-node 

communications - the communications between nodes, and intra-node communications - the 

communications within a node. 

The communications between compute nodes in an SMP cluster are the same as inter-

node, point-to-point, based communications. The intra-node communications can have differ­

ent approaches, as described earlier. Many MPI implementations use shared memory send 

and receive; in that case there are two layers of point-to-point communications: through the 

interconnection network and through the shared memory. 

In this dissertation, our experiments were tested on both propriety clusters and commodity 

built PC clust ers. The SMP clusters are of medium size (each SMP node has 2 to 16 processors), 

and the networks on the test ing platforms include IBM's propriety net work and Myrinet. 

1.3 Parallel Programming Models 

As discussed in the last section, there are different kinds of parallel systems. Different 

programming models can be developed for different, types of parallel architectures. However, it 

is rarely the case that we develop a programming model for only one particular architecture; we 

usually develop a programming model based on a "virt ual architecture" that, can be applied on 

different parallel systems. For example, the programming model of MPI assumes the underlying 

network is fully connected, but on a real parallel system the interconnection network may have 

a certain topology. A theoretical model, parallel random access model (PRAM), assumes 

constant memory access time even in a real shared memory machine. The memory access time 

for each memory unit may be different. In this section, we describe the programming models 

for different, parallel architectures. 
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Figure 1.6 The programming model on the distributed memory systems. 

1.3.1 Parallel Programming on Distributed Memory Systems 

The most commonly used programming model on the distributed memory systems is to 

use message passing. In this programming model the execution of a parallel application is 

divided into computation stages and communication stages. Each compute node processes 

a certain amount of computation, followed by data exchange through message passing, then 

the computation-communication stages are repeated until the application terminates. This is 

shown in Figure 1.6. MPI (message passing interface) [28] and PVM (parallel virtual machine) 

[92] are the two most commonly used environments for this type of programming. 

Although the MPI style of programming is currently the dominant style of designing dis­

tributed memory parallel applications, it is regarded as the assembly level of parallel program­

ming since data (computation) must be explicit divided and moved (coordinated) between 

compute nodes. To simplify the programming efforts and reduce t he burden of a program­

mer, several parallel programming toolkits and languages have been developed such as Global 

Arrays (GA) [93], High Performance Fortran (IIPF) [69] and SHMEM [94]. 
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Figure 1.7 The programming model on the shared memory systems. 

1.3.2 Parallel Programming on Shared Memory Systems 

The PRAM model is the most commonly used model to design parallel programs on shared 

memory systems; t he model assumes that memory access time is const ant for every memory 

location in the shared memory. In the PRAM programming model the whole computation se­

quence is divided into smaller computation stages; during each computation stage each process 

works oil a certain, unique data segment, with careful coordination of reading or writing data. 

This programming model is shown in Figure 1.7. 

Pthreads [95) is one programming language (library) that can be used to implement, algo­

rithms developed with PRAM model. However, Pthreads is also regarded as assembly level 

shared memory parallel programming, since the data segments for each thread must be care­

fully defined and the computational sequence must be carefully coordinated. For scientific 

applications, a different programming language, OpenMP [70] was developed to leverage the 

burden of writing scientific applications on shared memory systems. 

1.3.3 Parallel Programming on SMP Clusters 

The hierarchical memory and communication structures on SMP clusters provides inter­

esting opportunities for improving the performance of parallel applications, thus different pro 
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distribute data 

to nodes. 

data for each processors. 

Figure 1.8 Mixed Mode Programming Model for SMP clusters. 

gramming models have been developed to take advantage of the SMP architecture. The pro­

gramming model for uni processor clusters, such as the PRAM programming model, the BSP 

model [2], or the distributed memory programming model for MPI programming, all assume 

no communication hierarchy and thus cannot take full advantage of the SMP architecture. An 

emerging programming model for SMP clusters to date is to use MPI to design the inter-node 

layer of parallel applications, partition data and distribute data into the distributed memory 

on different, compute nodes. After data is in place within an SMP node, OpenMP is used for 

an additional layer of parallelism. 

A different, approach is to use Pthreads for parallelization within an SMP node as one of 

our experiments on mixed mode programming [112]. The detail of this research is shown in 

the appendix. However, Pthreads programming is primarily targeted at systems programming, 

and there is only one lull implementation for the Fortran interface. Application developers are 

generally encouraged to use OpenMP for the shared memory layer of parallelization. Figure 

1.8 shows this mixed mode programming model. 

Although we can use MPI plus OpenMP for programming on an SMP cluster, it is still an 
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Figure 1.9 Block diagram of the MPI communication types on SMP clus­

ter. 

open problem as which programming style, pure MPI or mixed MPI and OpenMP, leads to bet­

ter performance [84, 85, 86|. Moreover, mixing OpenMP arid MPI programs requires redesign 

of many pure MPI applications, which in reality is error prone and has large development costs. 

Besides the mixed mode programming model, there are at least two programming model for 

SMP clusters: SIMPLE [87] designed by Bader et al. and Multi-Protocol Active Messages [83] 

designed by Lumetta et al.. Both require redesign and receding of parallel applications. 

The alternat ive for exist ing MPI applications is to take advantage of the SMP architecture 

via an SMP aware MPI implementation. If we can provide an MPI library that automatically 

utilizes the underlying SMP architecture for communications, existing MPI applications can 

gain improved performance without the need to make modifications. 

There are some existing MPI implementations t hat optimize send and receive using the 

SMP architecture for communications: M PIC 112 [68], the MPI implementation by Protopopov 

and Skjellum [32], another MPI implementation for SMP clusters by Takahashi et, al. [33] 

and IBM's MPI implementation. This optimization improves the performance of point-to-

point communications, but is too simple for collective communications and does not take full 

advantage of the SMP architecture. We explain the deficiencies of this approach in detail in 

the next chapter. 
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1.4 MPI Collective Communications on SMP Clusters 

Since mixed mode programming (MPI plus OpenMP or Pthreads) requires redesign and 

receding of an application and is error prone, our approach is to improve the performance of 

parallel applications on SMP clusters by enhancing the MPI implementations, i.e., make MPI 

implementat ions SMP aware. There are several approaches to implement MPI communications 

on SMP clusters. Figure 1.9 shows different communication types for MPI. If the underlying 

communication subsystem supports OS-bypass [71, 96] capability (a message goes directly to 

the interconnection network without one extra copy to operating system buffers), then it is 

possible for the MPI implementation to to send a. message to another process without the 

intervention of operating system. Without OS-bypass, a message still has to go t hrough the 

operating system and it will require at least one copy before the message is sent into the network 

(e.g., a copy from "user space" to "kernel space"). For the communication within an SMP node, 

the implementations of shared memory send/receive or concurrent memory access functions 

are usually done through standard system calls, which makes operating system intervention 

unavoidable. 

MPI is designed with "point-to-point" communications in mind, thus most algorithms for 

collective communication are also designed base on "point-to-point" communicat ions. On SMP 

clusters, point-to-point communicat ions can be eit her through the interconnect ion network, or 

through shared memory. The point-to-point based sequential broadcast on an SMP cluster 

is shown in Figure 1.10(a), in which every communication is through network. In Figure 

1.10(b) the communicat ions within an SMP nodes are through shared memory, and the com­

munications between SMP nodes are through the interconnection network. In Figure 1.10(c) 

the inter-node layer communications are the same as in (a) and (b), but the communications 

within an SMP nodes use concurrent memory access. We will discuss the details of this mode 

of operation in the next chapter. 

The strategy that uses concurrent memory access to design collective communications was 

first proposed by S is tare al. [8] for several collective operations on an SUN SMP machine. 

However, there is no library that uses this approach to design all collective communications 
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Figure 1.10 Three approaches to broadcast, a message on SMP cluster. 

that can be generally applied on different SMP clusters. How to utilize shared memory to 

design collective communications is one of the research topics in this dissertation. 

1.5 Automatically Tuning Libraries 

The complexity of current parallel architectures leads to different, types of clusters. A 

cluster may consist of IBM SP2 nodes connect ed by Gigabit Ethernet., running the A1X Oper­

ating System, or may consist of Intel Xeon processors, connected by Myrinet, running Linux 

or FreeBSD. Such diversity of cluster architectures make it impossible to find a specific MPI 
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implementation that is optimized for that, particular cluster. There are more than ten col­

lective operations in the MPI standard, and each operation can be implemented with many 

algorithms. As one can expect, an implementation may be the optimal choice for a certain 

platform under a certain setting, and at the same time it may not be the best choice for another 

platform under the same setting. This observation encouraged researchers to develop tunable 

collective communication library such as the CCL [24], which provides many implementations 

of a. collective communication, and application developers must, decide which implementation 

to use based on their target platforms and algorithms. However, expecting the administrator 

or application developers to manually tune the MPI for a cluster is impractical. The tuning 

mechanism in MPICII is to switch between different implementations based on message size, 

and this is too simple to provide optimal performance for different types of clusters. The nat­

ural engineering solution is to design mechanisms that can automatically tune the collective 

communications for optimal performance. 

The methodology of automatic tuning was used to design ATLAS (Automatically Tuned 

Linear Algebra Software) [98] on uni-processor computers. In ATLAS different implementa­

tions of linear algebra functions are collected and tested, then the best implementation can 

be found base on the cache and memory architectures. When we apply the automatic tuning 

met hodology on tuning collective communications, we can collect a set of good algorithms and 

implementations for different collective operations in the library. During the execution of an 

application when a collective operation is called, the best implementation of that, operat ion 

is selected base on the runtime information such as message size, number of nodes, network 

topology. 

Two existing automatic tuning MPI implementations are MagPIe [10, 11] and ACCT 

[14, 13], ACCT, which is part of the FT-MPI [82] project, assumes each node has only one 

processor, and uses the strategy mentioned earlier. Although they proposed new implementa­

tions of collective communications and tuning st rategies, many hand tuning processes are still 

required from an application developer. 



www.manaraa.com

16 

1.6 Problem Description 

The purpose of this research is to develop the foundation for an automatically tuned col­

lective communication system on SMP clusters. The key problems in building such a system 

includes: developing approaches to take advantage of the SMP architecture for collective com­

munications, exploring the performance model, and providing tuning strategies for the newly 

developed collective communications 011 SMP clusters. 

The design methodology for the two existing systems is either too simple for SMP clusters 

(ACCT assumes only one layer of communication), or not an optimal choice for SMP clusters 

(MagPIe was targeting for clusters connected by a wide area network, WAN). Both are based on 

point-to-point communications. A fundamental question is, how to utilize the SMP architecture 

to design collective communications, and at the same time the optimizing techniques used must 

also be portable? 

The novelty of this approach is the generic utilization of the SMP architecture as the 

foundation of the library. There are several building blocks that are crucial for the design and 

implementation of such as system. 

1.6.1 Programming Model for Collective Communications within an SMP node 

The first challenge in this research is to develop a generic programming model that allow 

us to design collective communications within an SMP node. The existing approaches in the 

literature optimize MPLSend/MPLRecv through shared memory and use implementations 

for inter-node collective communications directly. A few MPI implementations that utilize 

concurrent memory access implement only a small set of collective communications on a few 

specific platforms. For example, Sistare et al. [8] designed broadcast, reduce and barrier on a 

SUN cluster. Tipparaju et al. [9] design the same three collective communications for IBM SP 

clusters. With more complex parallel applicat ions, more complex operations, such as scatter, 

gather, all-to-all, etc, must also be considered. 

To our best knowledge, there are no generic guidelines on how to develop different, collective 

operations on a SMP node. Moreover, when can the advantages of the SMP architecture 
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(concurrent memory access) be utilized is also unclear. The first step of this research is thus to 

develop a generic programming model that allows us to design all collective communications 

with concurrent memory access features, and also explore the limitations of this approach. 

1.6.2 Generic Overlapping Mechanisms for Inter-node/Intra-node Communica­

tions 

An important issue that requires a generic approach in collective operations on SMP clus­

ters is the mechanisms that allow overlapping between inter-node/intra-node communications. 

A platform specific approach was proposed by Tipparaju et al. [9]. The approach uses remote 

direct memory access (RDMA) for inter-node communications to overlap intra-node communi­

cations, which uses concurrent memory access. The functions for RDMA are provided by the 

IBM LAP! library [88] which is specific to the IBM platform and requires the IBM proprietary 

switch technology. 

From the point of view of portability, such a platform specific approach is not favorable. 

There are several alternative approaches that may allow us to design overlapping mechanisms. 

We may use A RM CI [80], developed by Pacific Northwest National Laboratory, to replace 

RDMA in Tipparaju's approach. or use similar RDMA functionalities provided by the MPI-2 

[67] st andard. We can even use the most generic non-blocking communications for overlapping 

inter-node/intra-communications. The key issue in this problem is to determine an approach 

that, can provide efficient and portable mechanisms to overlap iutcr-node/intra-node collect ive 

communications. 

The generic programming model for designing collective communications within an SMP 

node and the generic overlapping mechanisms for inter-node/intra-node communications are 

the two key characteristics of SMP collective communications that distinguish them from 

the point-to-point based ones. These are normally platform specific approaches. If generic 

approaches can be developed, we can construct a portable high performance design for collective 

communications on SMP clusters. 
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1.6.3 Efficient Collective Communications Design based on the New Generic Pro­

gramming Model 

Current collective communication algorithms [19, 20, 21, 22, 23, 24, 15, 16, 17, 25, 26, 27] 

are designed for the inter-node layer, and are point-to-point, based only. Some algorithms 

consider the features of SMP architecture [18] ; the approach is also based on point-to-point 

communications, and no overlapping between inter-node/intra-node communications. While 

the above generic programming model can be developed, it is clear that, we need new algorithms 

and implementations t hat, take into consideration of overlapping mechanisms and the SMP 

architecture. The collect ive operations being investigated should not, be limited to those three 

most often explored collective communications, but should also include other more complex 

operations such as scatter, gather, all-gather, all-to-all. 

1.6.4 Performance Modeling 

The existing performance models for collective communications, such as the Hockney model 

[1], LogP [3], LogGP [4] or parameterized LogP [10], assume a flat, communication structure 

with point-to-point communications. Even a model such as parameterized LogP that takes the 

hierarchal communication structure into account, the overlapping of communications between 

two communication layers is still based on overlapping point-to-point, communications. 

With the new programming model, the collective communications are using both shared 

memory collective communications and overlapping mechanisms (mixed mode collective com­

munications). What are t he characteristics that distinguish them from point-to-point, based 

collective communications on SMP clusters? What, is the performance model that can de­

scribe this kind of collective communications? A new performance model is needed for the new 

programming model so we can evaluate an implementation without implementing it. 

When the new performance model is developed, it can provide better understanding of t he 

interaction between inter-node/intra-node communications, performance predictions of mixed 

mode collective communications, and t he tuning strategies to reduce the amount of experiments 

required to tune for optimal performance. 
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1.6.5 A Micro-benchmarking Set for Collective Communications 

There are many algorithms for a collective operation, and for an algorithm there are many 

possible implementations; each implementation may have several parameters to tune to achieve 

optimal performance. It is not practical to implement every possible implementation for a 

collective communication. Also, the amount of experiments to extract the optimal values 

for parameters during run time can be very large and this can hurt the performance of an 

application. 

Instead of implementing every possible implementation then conducting all performance 

tuning during runtime, an off-line performance tuning tool can be used to select the imple­

mentations that may provide good performance and filter out unnecessary experiments. Based 

on the results of the off-line tuning, the runtime tuning system conducts experiments that can 

only be done when the runtime information is available. This performance tuning tool is a 

micro-benchmarking set for collective communications which should provide the information 

such as shared memory buffer size, number of pipeline buffers, performance prediction of an 

algorithms or implementation, testing range of a certain parameter. 

Constructing a detailed and complete analysis of how to design micro-benchmarks for every 

collective communication can take from months to years; this dissertation will only provide a 

guideline for designing this micro-benchmarking tool. 

1.6.6 Foundation for an Automatic Tuning System 

The key element of an automatic tuning collective communication system is to efficiently 

select the best approach during run time. Two existing systems. MagPIe and ACCT, use 

different approaches for this purpose. For MagPIe, it uses parameterize LogP [10] model for 

performance predict ion. The values of the basic parameters (latency I, overhead o, gate value 

g) for the model are extracted from experiments. During runtime MagPIe uses those values 

to predict the performance of a certain approach and selects the one with the best prediction. 

The approaches that use run time calculation can be applied in a WAN environment in which 

the latency between local network and wide area network are at least two orders of magnit ude 
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larger and the computation time as well as the cost of local communications can be subsumed 

into the cost of wide area communications. ACCT exhaustively tests different combinations of 

{ operation, message size, segment size, number of nodes, algorithm} and extracts the combina­

tion with the best overall performance. Since there are infinite possible combinations of the five 

parameters, a reasonable testing range of each parameter is assigned by heuristic approaches. 

How the extracted parameter information is used during run time was not mentioned. 

On the SMP clusters, the choice to implement a collective communication is not limited 

to point-to-point based approach. In this dissertation we will discuss the possible approaches 

to design collective communications on SMP clusters. The vast number of possible imple­

mentations also implies that the tuning mechanisms in ACCT or MagPIe can not be directly 

applied. We will also discuss how to utilize each developed mechanism into the structure of an 

automatic tuning sequence that can efficiently extract the optimal implementations. 

1.7 Summary 

Figure 1.11 outlines the existing generic approaches, existing platform specific approaches, 

and the proposed approaches that are in the dissertation. In summary, the existing generic 

approaches are inter-node collective communication algorithms, implementations and perfor­

mance model for point-to-point based communications as well as automatic tuning strategies 

for uni-node clusters. Existing platform specific approaches are a limited set of collective opera­

tions on a few SMP clusters and a RDMA inter-node approach to overlap inter-node/intra-node 

communications. The proposed approaches in this dissertation include: generic approaches of 

shared memory collective communications, an overlapping mechanism on SMP clusters, a new 

performance model and several tuning strategies for mixed mode collective communications. 

Together these mechanisms provide the foundation to build a practical automatic tuning col­

lective communication system for SMP clusters. 



www.manaraa.com

21 

Internode Communication Layer 
t x 

Inter-node 
collective 

communication 

algorithms and 
implementations. 

Point to point base 
performance model 

and 

automatic tuning 

mechanisms. 

/ 

Overlapping 

Inici/lnini node 

mechanisms 

Plattoi m spcific 

approaches for 

a few collective 

communications 

+ 

Existing 
generic 

approach 

O o 
Existing 
platform 
specific 

approacli 

i Inter-node 
1 collective 
i communication 
' algorithms. 

j implementations. j implementations. 

i and 
1 perfornance 
, model. 

Proposed 
generic 

approach 

Programming 
model for 

SMP collectove 
communications 

Automatic Tuning 

System for C.C. 

on SMP Clusters 

Intra-node Communication Layer 

Figure 1.11 The existing generic approaches, the exist ing platform specific 

approaches and the proposed new generic approaches in dia­

gram. 



www.manaraa.com

22 

CHAPTER 2. TUNABLE COLLECTIVE COMMUNICATIONS FOR 

THE SMP ARCHITECTURE 

2.1 Introduction 

When designing collective communications for better performance within an SMP node, 

most MPI implementations focus on improving the efficiency of point-to-point based collective 

communications by implementing send and receive through shared memory. The feature of 

the SMP architecture, concurrent memory access, implies another possibility to improve the 

performance of collective communications. There are three approaches to implement collective 

communications within an SMP node. We introduced these three approaches in the previous 

chapter, and we discuss them in detail in this section. 

2.1.1 Collective Communications Through the Interconnection Network 

The first approach uses the intercommunication network to pass messages between MPI 

processes within a node. As long as each MPI process has access to NIC and collective commu­

nications are implemented using point-to-point communications, the collective communication 

implementations on the inter-node layer can be directly applied on the intra-node layer. The 

drawback of this approach is that, processes may have to compete with each other to gain 

access of NIC for communications. The experiment by Vadhiyar [13] shows that, the latency 

of performing a broadcast through NIC within an SMP node of 8 processors is much worse 

than that of broadcasting between 8 uni-processor nodes. 
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2.1.2 Collective Communications Through Shared Memory Send and Receive 

The second and the third approaches use shared memory for collective communications. 

The second approach, the most commonly used approach by many MPI implementations, is to 

design send and receive through shared memory within an SMP node. As the first approach, 

the collective communication implementations on the inter-node layer can be used on the 

intra-node layer without any modification. The assumption of this approach is that, within an 

SMP node, the latency of sending a message from one processor to another processor through 

shared memory should be less than through the intercommunication network. By reducing 

the cost of sending or receiving a message, we should be able to reduce the overall cost of a 

collective communication. Several MPI implementations are of this type: MPIC1I2 [68], MPI 

implementation by Protopopov and Skjellum [32], another MPI for SMP clusters by Takahashi 

et al. [33] and IBM's MPI implementation. The optimizations of this approach usually focus 

on the problems such as how to design better algorithms base on shared memory send and 

receive, how to handle "flood" of messages, memory allocation [31, 36], etc. 

However, optimizing just send and receive ignores the possible performance gain of using 

concurrent memory access on the SMP architecture, and sometimes it leads to bad performance 

due to extra memory copies caused by applying inter-node algorithms on the intra-node layer. 

Figure 2.1 shows the result of inter node scatter of flat tree algorithm and binomial tree algo­

rithm oil an IBM cluster at National Energy Research Scientific Computing Center (NERSC); 

binomial tree algorithm performs better than chain tree algorithm. Figure 2.2 is the result 

of the same two algorithms implemented using shared memory send/receive on the intra-node 

layer. Flat tree performs better on the intra-node layer due to fewer extra memory copies. 

Analyzing the performance using the Hockney model [1] does not reveal the answer to this 

result since the cost of binomial tree is logB * (A + FT * TIL), while sequential tree is (B-l) * 

(a -/- [i * m). We will discuss how to use Hockney model to measure performance in a later 

section. 

The reason for the poor performance of the binomial tree algorithm on the intra-node layer 

is due to memory copy overhead. The binomial tree algorithm used the "recursive doubling" 
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Figure 2.1 Performance of two scatter algorithms on the inter-node layer 

on the IBM SP cluster. 

technique, which sends half of the scatter dat a to another process recursively so communication 

can he processed in parallel. Using this strategy, a, message can be copied at most logB times 

before it reaches its destination, while a sequential algorithm a message needs at most one 

copy to reach its destination and incurs no extra memory copy. 

We tested broadcast, scatter, gather, all-gather and all-to-all, since those collective opera­

tions can be implemented with a fiat tree (sequential) algorithm and a binomial tree algorithm. 

Except for the broadcast operation, which does not require the recursive doubling technique, 

all other operations show similar results. When the data size is small, the recursive doubling 

technique provides better performance. As the data size increases, the performance of binomial 

tree algorithm degrades gradually, and the sequential algorithm eventually performs better. 

As for the broadcast, since the binomial tree broadcast does not incur any extra data move­

ment, overhead, it performs bet ter then sequential algorithm for both inter-node and intra-node 

communications. This result is published in reference [114]. 
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Figure 2.2 Performance of two scatter algorithms on the intra-node layer 

on the IBM SP cluster. 

When shared memory send and receive are available, the latency on the intra-node layer 

is usually smaller than the latency on the inter-node layer, suggesting a. hierarchy structure 

in communications. Some collective communication algorithms are developed base on such 

hierarchical structure. Golebiewski et al. [18] developed several collective communication 

algorithms base on the difference of latency on two communication layers within an SMP 

cluster. A different method is to direct ly apply M PI implement at ions for GRID comput ing on 

SMP clusters. In this method we can map the hierarchy structure of GRID communications 

(WAN / LAN) onto SMP communications (inter-node /intra-node). MPICH-G2 [29, 30] and 

MagPIe [10] are possible choices for this approach. 

2.1.3 Collective Communications Using Concurrent Memory Access 

The third approach to implement collective communications within an SMP node is to 

use concurrent memory access to design collective communications. This approach was first 



www.manaraa.com

26 

proposed by Sistare et al. [8] for three collective operations, broadcast, barrier and reduce, on 

an SUN SMP machine. A similar approach was proposed by Tipparaju et al. [9] on an IBM 

cluster. Again, they implemented the same three collective communications as in Sistare's 

approach. 

The two existing methods implemented the set of collective operations that are frequently 

used, on a, specific platform, and did not mention if it is possible to port their implementations 

to a different platform. This lead us to consider the following questions: (1). How can we 

design all collective operations within an SMP node using concurrent memory access features? 

(2). What is the limitation of designing collective communications with concurrent memory 

access? (3). How to design portable collective communications that use shared memory? (4). 

When porting these implementations to different platforms, what are the parameters we need 

to tune to achieve better performance? 

2.2 The Gcneric Communication Model for SMP Clusters 

To design portable shared memory collective communications, one approach is to inves­

tigate different SMP architectures, design the library for each available architecture, collect, 

the programs into a, library, and then compile the corresponding programs according to the 

target platform. Using t his approach, the library is designed according to the characteristics 

of a certain platform and may provide very good performance. However, it is usually time 

consuming and also requires huge efforts to cover all kinds of platform. 

Another approach is to explore the common characteristics and functionalities available 

across different SMP architectures, define parameters accordingly, and design communication 

library that, the performance can be achieved by tuning those parameters on different platforms. 

In this approach, the t ime it, takes to design t he communication library can be reduced since 

the same implementation can be used across different, platforms. However, the tuning time 

may be very long and the performance may not be as good as platform specific optimizations. 

In this dissert ation we explore the potential of the second approach. We use a well understood 

communication model for SMP cluster as the base for our tunable collective communication 
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Figure 2.3 Generic Communication Model for SMP Clusters 

library. 

The communication model consists of two levels: the inter-node network communication 

and the intra-node shared-memory operations. On the intra-node layer, shared memory oper­

ations are implemented as follows. A shared-memory segment of limited size is allocated for 

communications between any two or more processors on the same node. Any communication 

within an SMP node is begun by the source process copying data from its local memory into 

the shared-memory segment, then the receiving processes copy data, from the shared-memory 

segment to their local memories. The shared-memory operat ions are implemented with Sys­

tem V shared-memory functionality that are available on any UNIX-like systems, thus that 

are port able. 

Within each SMP node, one processor (group coordinator) is in charge of scheduling com­

munications with the other nodes. For communications between nodes we use standard MPI 

send/receive or non-blocking send/receive operations as a generic base. In this chapter we 

assume t here is no overlapping between the t wo levels of communications, and all inter-node 

collective communications are implemented with blocking send/receive. In the next, chapter 

we will discuss generic mechanisms to overlap inter-node/intra-node communications. Figure 

2.3 outlines this generic communication model. 
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2.2.1 The Testing Platforms 

Machine. Type CPUs per node Network type MPI implementation Te.stinii MPI tasks 
IBM PowerS 1(> IBM Propriety network IBM MPI 1 <>xl 6 

Intel, Xeon 2 Myrinet 1 (kv.2 
Macintosh, G J, 2 Myrinet. 

Table 2.1 Three testing platform*. 

Three testing clusters are listed in Table 2.1. The IBM SP system at the National Energy 

Research Scientific Computing Center is a distributed-memory parallel supercomputer with 380 

compute nodes. Each node has 16 POWER3+ processors and at least 16 G Bytes of memory, 

thus at least 1 G Byte of memory per processor. Each node has 64 KBytes of LI data cache 

and 8192 KBytes of L2 cache. The nodes are interconnected via an IBM proprietary switching 

network and run IBM's implementation of MPI. The Intel Cluster is located at Iowa State 

University. It consists of 44 nodes with dual Intel Xeon processors (88 processors). The nodes, 

running MPICH, are connected with Myrinet. The Macintosh G4 Cluster is located at the 

Scalable Computing Laboratory at Ames Laboratory. It is a 32-node "Beowulf7 style cluster 

computer consisting of 16 single processor G4s with 512 MB RAM and 16 dual processor G4s 

with 1 GB RAM, all running Debian Linux. The G4 cluster uses Myrinet for the primary 

network communication layer. For our testing on the G4 we used only dual processor nodes, 

running MP1CH-GM. 

In this chapter we use only IBM SP cluster for our experiments since it is the only testing 

platform with more than two processors per node, and the approaches in this chapter can 

have very limited performance improvement on dual-processors clusters. In the later chapters 

we will show the experimental results on the other platforms as more complex met hods are 

developed, arid the performance improvement can be observed even on duel-processors clusters. 

2.2.2 Notations 

All the figures in this dissertation use the notation AxB to denote that the experiment uses 

A nodes, each with B MPI tasks. For example, 4x8 means we are using 4 nodes, each with 8 

MPT tasks for the specific experiment. In this chapter the curves labeled with SUM mean we 
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used our shared-memory implementation, and those label with XCC mean we utilized a com­

bination of MPI for inter-node communications and shared-memory operations for intra-node 

communications. In the other chapters we use ATCOM to represent all our implementations. 

2.3 Collective Communications on the Inter-node Layer 

Many collective communication algorithms can be found in the literature such as CCL 

by Bala et, al. [24], InterCom by Barnett et al. [21, 22], and the work of Mitra et al. on 

a fast collective communication library [20]. On the inter-node layer, we implemented the 

binomial tree algorithm and flat tree algorithm for four implemented collective communications: 

broadcast, scatter, gather and all-to-all. We also use sc.atter-allgat.her broadcast algorithm as 

an example of a two stages algorithm. We import it from MPICH 1.2.5 [15] with a small 

modification to make it work on the IBM SP cluster but keeping the basic algorithm intact. 

The detail of each tree algorithm and the designing issues of collective communications on this 

layer will be discussed in the next chapter. 

All implementations in this chapter are implemented with blocking send/receive, and the 

tuning criteria on this layer are straightforward: find the algorithm with the best performance 

for a particular collective communications. Theoretical analysis does not always give the answer 

as discussed earlier. The best algorithm for an operation on a certain platform usually has to 

be found through experimentation. 

2.4 Collective Communications on the Shared Memory Layer 

To design tunable collective communicat ions within an SMP node, we started by observing 

the operations of several major collective communications wit hin a MPI communicator: 

Broadcast: One sends and many receive the so,me data. 

Scatter: One sends and many receive different, data. 

Gather: Everyone sends different data and one. receives all data. 

Allgather: Everyone sends different, data and everyone receives all data. 
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Barrier: synchronization. 

All-to-all: everyone sends different data and everyone receives different data. 

From the collective operation perspective, when executing a collective communications, a 

process is in one of the following status: 

(1). Sending a message to a another process. 

(2). Receiving a message from another process. 

(3). Sending a message to a group of process. 

(4). Receiving messages from a group of process. 

If these operations are implemented with point-to-point communications, (3) and (4) would 

be implemented in several stages using send and receive. On the other hand, (3) and (4) are 

what, we can take advantage of SMP architecture. 

According to our communication model, processes within an SMP node are communicating 

through a shared memory buffer of limited size. When the total communicating message size 

is smaller than this limited shared buffer size, all collective communications can be completed 

within one stage of concurrent memory access. If the communicating message size is larger 

than the shared memory buffer, we have to make proper use of pipelining similar as we use on 

the inter-node layer collective communications (detail of the inter-node pipelining strategies 

will be discussed in the next chapter). 

Base on the above observation, we define the following basic shared-memory operat ions on 

a given SMP node: 

( J )  S e n d e r - p u t ( )  :  S e n d e r -  p u t s  m e s s a g e  i n t o  a  s h a r e d  b u f f e r .  

(2) Receiver~get() : Receiver gets message from a shared buffer. 

(3) Pairsync() : Synchronization betweeri two processes. 

(4) Group-get(p,m) : A group of p processes gets a message of size m from a shared buffer. 

(5) Grcmj)-seg^gct(p,m) : A group of p processes gels a message from a shared buffer, each 
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Figure 2.4 Cost of accessing data within an SMP node on the IBM SP 

cluster. 

process gets Us part of the data of size m. 

(6) G roups eg_put (p, m) : A group of p processes puts a message into a shared buffer, each 

process puts its part of the data of size m. 

(7) Group sync (p) : Synchronization among a group of p processes. 

{Sender-put(), Pairsync(), Receiver-get()) is the minimum set of operations required for 

implementing collective communications on a shared-memory layer within an SMP node. A 

send and receive operation between processes in message passing can be replaced by {SenderjputQ, 

Pairsync(), Receiver-get()) within an SMP node. To utilize concurrent memory access, we 

have added four more operations that utilize this feature, and decompose collective communi­

cations into these seven basic shared-memory operations. 

Our decomposition is based on the following observations: Figure 2.4 shows the performance 

of two broadcast approaches to access a data block of 8K. One approach uses the generic-

Cost of broadcast 8K message 

i i i 
Shared memory group access 
Shared memory send/receive 
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c.c. (a) m < B 
1 Broadcast Sender.putQ, Group.sync(), Group.getQ 

2 Scatter Senderjput(), GroupsyncQ, Group.seg.getQ 

3 Gather Group.seg.putQ, Groupsync(), Receiver.get() 

4 All-to-all Groupseg.putQ, GroupsyncQ, Group.seg-get() with pipeline 

5 Allgather Groupseg.putQ, Groupsync(), Grvup..get() 

Table 2.2 Five collective communications decomposed into basic 

shared-memory operations when data size m is smaller 

than shared buffer size B 

C.C. (b) m > B 
1 Broadcast Se.nder.putQ, GroupsyncQ, Group.getQ with pipeline 

2 Scatter Sender.putQ, PairsyncQ, Receiver.getQ with pipeline 

3 Gather Sender.putQ, PairsyncQ, Receiver.getQ with pipeline 

4 All-to-all pairwise-[Sender.putQ, Pair.syncQ, Receiver.getQ] with pipeline 

5 Allgather Sender.putQ, GroupsyncQ, Group.getQ with pipeline 

Table 2.3 Five collective communications decomposed into basic 

shared-memory operations when data size m is smaller 

than shared buffer size B 

shared-memory operations delineated in this chapter. This is one stage of ( SenderjpulQ, 

GroupsyncQ. Group.getQ). The second approach uses the vendor-based implementation and 

it is logp stages of shared-memory send and receive, p is the number of processors used within 

an SMP node. In all three cases the latency of shared memory operations are smaller than 

logp stages of send and receive. Moreover, when t he number of processes increase, the rate 

of run time increase is also much less than the second approach. However, this advantage 

can be used only up to a certain data size. When the data size increases, the hidden cost 

of ( Sender-putQ, GroupsyncQ , Group-getQ) such as page faults, TLB misses, and cache 

coherence maintenance also increases and this approach loses its advantage. The results also 

suggest that the tuning strategy is to find the best buffer size for shared-memory operations 

and use them whenever optimal 

In Table 2.2 and 2.3, we outline five collective communications as examples to show how 

to decompose these collective communications into basic shared-memory operations. 

This is certainly not the only way to decompose collective communications. If we assume 
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there are "hot spots" as mentioned in Sistare's work [8], we may want to develop different 

algorithms to avoid concurrent access of certain portions of memory. For example, this may 

be important in the hierarchical NUMA memory on an SGI origin system. Our approach is 

to find the maximum size that can take advantage of concurrent memory access, so we do not 

take "hot spots" into consideration. 

2.4.1 Analytical Tuning Criteria 

There are three mechanisms for communications within an SMP node: our shared memory 

approach, using the vendor send/receive shared-memory operations, and using communication 

network. We give our theoretical analysis here as the guideline to indicate when to use one 

approach and when to switch to another one. 

We use Hockney model [1] as the base to evaluate the performance of collective communi­

cations. Assume a is t he startup latency, ft is the inverse transmission rate, m is the message 

size, A is the number of SMP nodes in a cluster, B is the number of processors per SMP node, 

and p is the total number of processors. 

The lat ency of sending a message of size m bet ween two processes on the inter-node layer is 

(a + ft * m). If an inter-node broadcast is done by binomial tree algorithm, then the latency 

is: 

l o g A * ( a \ - f t * m ) .  (2.1) 

If it is done using the flat tree algorit hm, the infer-node communication latency is: 

(A — 1) * (a f ft * m). (2.2) 

Within an SMP node, the communication cost through the network, assuming there is no 

content ion of NIC between processes, is: 

logB * (a ft * m) (2.3) 

using binomial tree algorithm, and 

(B — 1) * (a -f ft * m) (2.4) 
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using flat tree algorithm. 

If intra-nocle communication is done by using the shared-memory send and receive, then 

the communication cost is /oc//./(binomial tree algorithm), or B-l (flat; tree algorithm) stages of 

shared-memory send and receive. 

If concurrent memory access to shared memory is possible, then the intra-node communi­

cation latency is k stages of: 

(group-op(single-op) + sync-op -f group-op(single-op)). (2.5) 

The value of k depends on m and how a collective communication is implemented on the 

shared-memory layer. Since in this chapter we assume there is no overlapping between inter-

node and intra-node communication, the total cost of a collective communication is just the 

sum of communication costs on the two layers. 

Assuming we use binomial algorithm for broadcast operation, then the choice of a particular 

approach basically depends on the relative latency of the following: 

(] ) logB * (a + ft * m), 

(2) logB stages of shared-memory send and receive, or 

(3) k stages oi'group-op (xingle^op) + sync-op -/- group^op(fiingle.-op). 

Clearly, when the data size is small enough that k = 1, or when we can use group operations 

to access the data such as in the broadcast algorithm, (3) is the best choice. If there are 

only two processors per SMP node (B = 2), or we can only use send and receive on the 

shared-memory layer such as in the scatter or gather algorithm with the large data size, then 

optimized shared-memory send/receive (2) will certainly help. When communication through 

the network is faster than through shared memory, (2) can be replaced by (1). If network 

communication is so fast that when the data size is small, even the time cost of logB * (a + 

P * m) is smaller than one stage of group-op (single-op) + sync.op + group.op(single-op). all 

that is needed is (I). 

It is clear from the above analysis that taking advantages of SMP architecture can have 

performance gains when the data size is small to medium (when k = 1). Vet.ter conducted 

experiments on several large-scale scientific applications [78, 79] and observed, "the pa.yload 
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Figure 2.5 Performance of different synchronization schemes. 

size of these collect ive operations is very small and this size remains practically invariant with 

respect to the problem size or the number of tasks." Based on the Vetter's observation, we 

believe that this approach should be considered as a way to improve the performance of MPI 

collective communications on SMP based clusters. 

The theoret ical formulat ions to predict the relative performance of (1), (2) and (3) are based 

on several basic parameters. There are tools such as the one provided by MagPIe [11, 12] to 

evaluate these parameters on different platforms. However, there is no tool to evaluate the 

contention of NIC by processes with the same SMP node, and it usually has to be measured 

by experiments. In this chapter we have chosen to compare them by experimentation so that, 

we can shed more light on an analytical functional form to determine when to switch from one 

algorithm to another. 

Polling synchronization with different mechanism 

Polling with dummy computation —i— 
Polling with No-Op —x—. 

Polling with sched_yield() - *-V 
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Figure 2.6 Sliared buffer size and copying performance. 

2.5 Tuning Parameters on the Shared Memory Layer 

Base on the analysis, our t urning strategy is to find the optimal buffer size such that a 

collective communication can be completed in one stage. When message size is larger than this 

buffer size, find the proper number of pipeline buffers to obtain better performance. When pair 

wise communications is the best choice for a collective communication, we switch to vendor's 

send/receive implementations if they are provided. 

2.5.1 Synchronization Schemes 

Several synchronization schemes are developed: polling with do nothing loop (no-op), 

polling with dummy computation, polling with sche.(Lyield() function, and signal. We have 

tested these synchronization methods and found the following results. Using signal gives the 

worst, performance; polling with sche(Lyield() provides good results only when shared memory 

buffer is large enough. Polling with no-op generally gives a good performance, and polling 
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Broadcast cost with different buffer size and buffer number 
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Figure 2.7 Performance of broadcast as a function of buffers on the IBM 

cluster. 

with dummy computations gives slight better performance than polling with no-op when the 

shared buffer is large. Figure 2.5 shows the performance comparison oi different synchroniza­

tion schemes except for the signal approach. The experimental results in this dissertation all 

use polling with no-op. 

2.5.2 Shared Buffer Size 

With a huge buffer size the collective communicat ion may be able to be completed in one 

stage, but hidden costs such as TLB misses may degrade performance. If we use a small buffer 

size, the sender and receiver may spend too much time in synchronization. To find a proper 

buffer size, we measured the cost of senderjput(). We tested data sizes Ironi IK, 2K, 4K up 

to 8MB, and for each data size we repeatedly copied data segments to buffer sizes of 16, 32, 

64 bytes up to the test data size. Figure 2.6 shows the cost of copying data sizes of 512K to 

8MB to shared memory through different shared-buffer sizes using log-log scale. The curve 

Buffer size = 4096 -
Buffer size = 8192 -- -x— 

Buffer size — 16384 

A—— 
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Figure 2.8 Performance of broadcast as a funct ion of buffers 

indicates a buffer from 4K to 16K is best for copying 8MB on our test system. We chose 8K 

as the shared-buffer size which generally gives a good performance. 

2.5.3 Pipeline Buffers 

When mult iple buffers are used in a pipelined fashion, the number of buffers used affects 

performance. While two buffers are frequently suggested in the literature, it does not guarantee 

optima] performance. Figure 2.7 shows how we tuned buffer numbers for broadcast operations. 

Two buffers of size 8K do not perform as well as 2 buffers of size 16K. When we increase to 

16 buffers, an 8K buffer size outperforms the other combinations for broadcast. Figure 2.8 

is the performance of the same implement at ion, with arid without tuning, against the vendor 

supplied MPIJBcastQ function. Without tuning (2 buffers of size 4K), the run time is 30% 

slower than the vendor implementation. After tuning, the run time is 50% faster than the 

vendor MPLBcast. 
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Shared Memory Broadcast Comparison (16 processes) 
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Figure 2.9 Performance of our broadcast implementation versus the vendor 

supplied broadcast on one SMP node 

2.6 Performance Measurement 

We use the following steps to measure the performance of a single operation: 

(1) Assign values 

(2) Purge cache 

(3) Barrier call 

(4) Start operation timing 

(5) Execute collective operation 

(0) End operation timing 

(7) Verify values 

(8) Allreduce operation to extract the node with the longest run time 

Purging cache is necessary to ensure that, data comes from main memory, not from cache. 
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Broadcast Comparison (16x16 processes) 
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Figure 2.10 Performance of our broadcast, implementation versus the ven­

dor supplied broadcast on 16 SMP nodes 

To purge cache, a memory block of L2 cache size is allocated; each byte in the block is then 

set to 0. This makes sure that no data used for communication is present in cache. 

During our experiments we found that, occasionally there are certain kind of "spikes" in 

our performance curve which can not be reproduced. We speculate it is due to the background 

system jobs. To eliminate this kind of "spike" and give more accurate results, our benchmarking 

procedure can set, t he parameters to determine how many runs we want for an experiment , and 

how many runs wit h "the longest, run time" to be discarded. For example, if for an experiment, 

we decide to run it 20 times (20 runs), we can discard the three runs with longest run time 

and compute the average of the rest seventeen runs. Our experimental results show that, when 

there is no irregular spike, this approach gives very close result with/without discarding runs. 

When there are irregular spikes, this approach can remove those irregular spikes and provides 

more accurate performance curves. 

There arc many collective communications in MPI; to make sure the implementations are 
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Shared Memory Scatter Comparison (16 processes) 
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Figure 2.11 Performance of our scatter implementation versus the vendor 

supplied broadcast on one SMP node. 

implemented correctly, we also designed routines to assign values to each message base on the 

type of collective communication and verify the correctness at the end of the operation. The 

verification routines can be set on or off by setting a parameter. 

Each node starts timing after barrier synchronization. When the collective operation is 

finished, the node with the longest run time is identified. By doing this we can meet the condi­

tion "between the first process starting and the last process finishing the collective operation" 

as described by Worsch and co-workers [34], The research efforts related to benchmarking 

MPI collective communications includes: Nafawut and Lionel [37], Worsch and co-workers 

[34[. SKaMPl [76], and the perftest of Gropp and Lusk for MI'KTl [35]. 
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Scatter Comparison (8x16 processes) 
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Figure 2.12 Performance of our scatter implementation versus the vendor 

supplied broadcast on 8 SMP nodes 

2.7 Experimental Results 

2.7.1 Broadcast 

Figure 2.9 and 2.10 show the performance of our generic hierarchical implementation of 

broadcast, against vendor's MPLBcast. Our approach is to select binomial tree algorithm 

for inter-node communication, and use shared memory operations for the intra-node layer 

communications. The result is usually at least, 30% faster than MPLBcast, and sometimes 

more than 50% faster than the MPLBcast time, especially when the data size is small. 

2.7.2 Scatter and Gather 

Our selection for scatter is as follow: when message size is less than or equal to 128K. 

use shared memory operations; if message is larger than 128K, switch to flat, tree algorithm 

that implemented using vendor's send/receive implementations. The results in Figures 2.11 

IBM MPLScatter —i— 
XCC Scatter —x- -

x —X' 
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Shared Memory all-to-all Comparison (16 processes) 

1e+06 
IBM MPLAIItoall — 

SHM_Alltoall —: 

100000 
co 

"O 
c 

8 
<D 
CO 

2 o 
E 

10000 

CD 

E 

1000 

100 
1e+08 100 10000 100000 1e+07 1000 1e+06 

data size (bytes) 

Figure 2.13 Performance of our all-to-all implementation versus the vendor 

supplied broadcast on one SMP node 

and 2.12 demonstrate that when the total data size is less than 128K, the run time of the 

concurrent, group access is just about, 40% faster than MPLScatter on a single node with 16 

MPI tasks. When using several nodes with 8 MPI tasks per node, our implementation can be 

as much as 30% faster than MPLScatter. Our shared-memory implementation performs better 

than the vendor implementation from 8K to 128K message size due to less synchronizations 

are required for shared memory operations at, this range. Gather is just t he inverse of scatter 

and the performance with the appropriate operat ions is similar. 

2.7.3 All-to-all 

Figure 2.13 shows the performance comparison of two shared-memory all-t,o-all approaches. 

Within an SMP node, the shared-memory all-to-all algorithm performs better than the other 

approaches when the data size is small to medium. However, our approach cannot, perform 

better than the pair-wise exchange on the testing platform even when data, size is small. When 
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Broadcast Comparison (16x1 processes) 
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Figure 2.14 Performance of two stage broadcast of MPICIl implementat ion 

versus tlie vendor supplied broadcast and our modified two 

stage broadcast versus the vendor supplied broadcast oil 16 

SMP nodes 

we are not using the pair-wise exchange algorithm and assuming only one process in each 

node is in charge of communication with other nodes, we have to do a shared-memory gather, 

inter-node all-to-all, and a shared-memory scatter set of steps. Even when the data size is 

small, group-comm has to re-arrange data so that shared-memory gather and scatter can be 

done in one stage; otherwise it is B stages of t he shared-memory scat ter or gather. This extra 

cost of memory operations are larger than the performance gain of t he shared-memory all-to-

all algorithm. Our choice here is to use pair-wise exchange when all-to-all operation involves 

inter-node communications, and use shared memory operations when only one SMP node is 

used. 
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Broadcast Comparison (16x16 processes) 
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Figure 2.15 Performance of two stage broadcast of M PIC II implementation 

versus the vendor supplied broadcast and our modified two 

stage broadcast versus the vendor supplied broadcast on 16 

SMP nodes 

2.7.4 Two Stage Algorithms 

Barnett et al. discussed broadcast algorithm [21] uses two stages: first message segments 

are scattered to all processes, then each process collects data by Allgather. The algorithm 

works well with large data sizes and is implemented in MPICH 1.2.5. Figure 2.14 shows the 

performance of the MPICH implementations of this algorithm compared to the IBM MPI J3cast 

on large data, sizes when communication involves only inter-node messages. However, if intra-

node communication is optimized only with send/receive, the algorithm performance degrades 

due to extra memory copies. Figure 2.15 shows the same algorithm run on 16 nodes with 

16 MPI tasks; the performance of this algorithm is much worse than IBMs MPLBcast. We 

modified the algorithm so that, it works only on the inter-node level. On the infra-node level 

we use shared-memory operations which incur no extra memory copy, and this implemen-
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Figure 2.16 Performance of our broadcast implementation versus the ven­

dor supplied broadcast on one SMP node, with 64-bit, address­

ing 

tat,ion even out performs our broadcast implementation using a binomial tree for inter-node 

communication. 

2.7.5 A Performance Update 

The experiments in this chapter were conducted in 2003 and the results were published in 

the Proceeding of the TASTED International Conference on Parallel and Distributed Comput­

ing and Networks conference (PDCN) in February 2004. In October 2004 t he vendor upgraded 

the MPI implementation on the IBM SP cluster, with the major improvement, on collect ive 

communications that can take advantage of the shared memory architecture. The memory 

copy operation wit hin an SMP node is also greatly improved so the extra-memory copies prob­

lem that, causes a, sequential algorithm to perform better than a binomial tree algorithm is 

corrected. The code must be compiled with 64-bit addressing to utilize shared memory for 

collective operations, otherwise it will still use shared memory send and receive for collect ive 

IBM MPLBcast 
SHM_Bcast 

- - •/ 



www.manaraa.com

47 

communications. 

We have compared our shared memory broadcast implementation with IBM's new 64-bit 

shared memory broadcast. Without 64-bit addressing support,, the performance comparison 

is similar to 2.9. With 64-bit addressing support, our generic implementation still outperform 

vendor's implementation for small message size up to 16K; after message size is larger than 

16K the performance are very close and our implementation is slightly better than the vendor's 

implementations most of the time. Figure 2.16 shows the result. 

2.8 Summary 

To achieve optimal communication performance on a cluster of SMP nodes, not only do 

we need optimal algorithms for the inter-node communications, but also good shared memory 

communication schemes that can be adjusted according to different collect ive communication 

characteristics. By decomposing collective communications into shared-memory operations, 

we provide an approach to design and improve collective communications within an SMP 

node. Our experimental results show that our approach can utilize SMP clusters better than 

the vendor's implementations. For the rest of this dissertation, if an intra-node collective 

communication is composed using concurrent memory access features, we call it shared memory 

collective communication. The approaches described in this chapter focus on designing shared 

memory collective communications, without any overlapping between inter-node/intra-node 

communications. To further utilize the SMP architecture, we discuss how to develop generic 

overlapping mechanisms in the next chapter. 
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CHAPTER 3. OVERLAPPING INTER-NODE/INTRA-NODE 

COLLECTIVE COMMUNICATIONS 

3.1 Introduction 

The second feature on SMP clusters that can be used to improve the performance of 

collective operations is to overlap inter-node and intra-node collective communications. 

One approach to overlap inter-node and intra-node communications is to map MagPIe's 

WAN/LAN communications model onto i liter- node /intra- node communications layers. Their 

approach assumes that there is a big difference of latency / over head between different commu­

nication layers (on the WAN environments, the difference is at least two order of magnitude). 

A communication tree that overlaps inter-node/intra-node communications can be calculated 

base on this difference. However, on SMP clusters the latency and overhead between the inter-

node/intra-node layers does not have such a huge difference (on our testing platforms, the 

difference of overhead is less than 50%); applying MagPIe's approaches on SMP clusters can 

only have very limited performance improvement. 

Another approach was proposed by Tipparaju et, al. [9j. In their approach they used 

remote direct memory access (RDMA) to implement pipelined version of inter-node collective 

communications, overlapping with shared memory collective communications. The RDM A 

functions were provided by LAPI, which is IBM's propriety low level communication library. 

At the time this dissertation is written there is no portable LAPI available, thus we consider 

Tipparaju's method is a platform specific approach. However, a new MPI implementation 

that is still under development, OpenMPI [73], may include a version of portable LAPI into 

its communication library and Tipparaju's approach may become portable in the fut ure. 

In this chapter we first explore several design issues of collective operations on the inter-
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node layer, then we discuss why RDM A functionalities in M PI-2 standard and A RM CI are not 

suitable for a generic approach to overlap inter-node/intra-node communications, followed by 

our generic mechanism to overlap inter-node and shared memory collective communications. 

A generic programming model for designing collective communications on SMP clusters is 

constructed based on this generic overlapping mechanism and the shared memory collective 

communications described in the previous chapter. Several collective communications are 

developed based on this model, and the performance results and comparison with the other 

implementations are also shown in this chapter. 

3.2 Algorithms for the Inter-node Collective Communication 

Before discussing the overlapping mechanisms of inter-node/intra-node communications, 

this section gives a brief introduction of the algorithms for the inter-node layer collective 

communications. Different algorithms for collective communications on tlie inter-node layer 

have been developed during the last two decades [20, 21, 22, 24, 23, 15, 16, 17, 25, 26, 27]. Their 

assumption is that there is no hierarchical structure in communications, and the underlying 

network is fully connected. These algorithms can he roughly classified into tree structures as 

used by ACCT [14], and they are shown in Figure 3.1. 

The four major tree algorithms for collective communications are flat, free (sequential tree), 

chain tree, binary tree and binomial tree. With a flat tree algorithm, the root node sends 

messages to all the other nodes one by one in the tree, as shown in Figure 3.1(a). Using a 

chain tree algorithm, the root node sends a message to its child node, then the child node 

forwards the message to it's child node and so on until the last node in tlie tree receives the 

message. This is shown in Figure 3.1(d). Ring algorithm, which is not shown in Figure 3.1, 

is a. variation of chain tree algorithm in which tlie fast node also sends messages to the first 

(root) node. 

When using a binary tree algorithm, a parent node sends messages to its two child nodes. 

The child nodes then send messages to their two child nodes until every node in the tree receives 

its message. With a binomial tree algorithm, the root node (rank 0) first sends a message to a 
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(c) Binominal tree 
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(d) Chain tree 

Figure 3.1 Tree structures for collective communications. 

node with rank p/2 (p is the number of processes in the communication group, here we assume 

p is a power of two), then the communication group is divided into two sub-groups; one group 

contains the original root node and the root node again sends a message to the node of rank 

p/4, and another group with node rank p/2 as the root node, and this new root node sends 

a, message to the node with rank p/2 + p/4• The process is repeated recursively until every 

node in the tree receives its message. 

Most collective communications can be developed base on the four tree algorithms; the 

two stages broadcast is also a composition of these algorithms. These algorithms certainly are 

not the only algorithms for collective communications; the other algorithms such as pair-wise 

exchange, recursive doubling are also commonly used for certain collective operat ions. We use 

these four algorithms in this dissertation due to their popularity and easy for understanding. 

The methods we developed in this dissertation can be applied on these algorithms and the 

performance improvement can be achieved on different SMP clusters. 
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3.3 The Programming Model 

Figure 3.2 outlines the programming model to design collective communications on SMP 

clusters. There are three layers in this model: the top layer is the inter-node communication 

layer, the bottom layer is the intra-node communication layer, and the middle layer is the 

overlapping mechanisms. 

There are different, methods to implement, collective communicat ions on the inter-node layer 

and the intra-node layer. Base on the methods used on the inter-node/intra-node layers we 

may have different choices of overlapping mechanisms. We listed all possible met hods on each 

layer and all possible combinations to design collective communications on SMP clusters in a 

generic approach. The existing generic approaches which are outlined by dash lines means the 

approaches taken by the other portable MPI implementations, and can be used across different 

SMP clusters. We add several new generic approaches that, are outlined in solid lines. The 

details of Figure 3.2 are discussed in the following subsections. 

3.3.1 The Intcr-node Communication Layer 

Most. MPI implementations, such as MPICH, implement one or several of the algorithms 

described earlier with blocking sends and receives. A blocking implementation usually incurs 

less software overhead than a. non-blocking implementation, thus performs well when the com­

munication is latency bound (usually small messages) [39]. However, when a communication is 

bandwidth bound [39] (usually large messages), the blocking implementation may not be the 

best, choice. Consider using chain tree algorithm to broadcast a large message with a. blocking 

implementation. Non-root nodes can not, start processing the message until the whole message 

is received. This can lead to very poor performance. 

To improve the performance of sending large messages, pipelining is taken to implement 

inter-node collective communications. Using pipelining [10, 14]. a message is first, broken 

into many segments. The sender then sends the message segment by segment, instead of the 

whole message, thus non-root nodes can process the message once a segment is received. This 

is shown in Figure 3.3. We usually use non-blocking sends and receives to implement, the 
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pipelined version of an algorithm. Since a blocking implementation blocks the sending or 

receiving processes when processing a collective communication, we can only use the non-

blocking implementations to design overlapping mechanisms for overlapping inter-node/intra-

node communications. 

time 

process I 

process 2 

process 3 

process 4 

(a) Sending a message from process I to 4 without pipelining. 

time 

process I 

process 2 

process 3 

process 4 

(b) Sending a message from process 1 to 4 with pipelining. 

Figure 3.3 Processing a. message, without pipelining and with pipelining. 

An algorithm can be implemented as a whole message or segmented, either using MPI 

blocking or non-blocking send/receive, thus we have four different implementations for a col­

lective communication algorithm on the inter-node layer. This is shown as the top layer in 

Figure 3.2. 

The segmented blocking implementat ions may also improve the performance t hrough pipelin­

ing; however, they block the calling processes and make it not possible for overlapping. The 

non-blocking whole message implementation does not take advantage of pipelining. Both ap­
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proaches seldom provide good performance; we list them in the model for completeness. 

Segmented non-blocking (pipelined) implementations incur more software overhead, require 

careful calculation for message segments, making them difficult to implement and even more 

difficult to tune to achieve good performance. However, those are the implementations that can 

utilize pipelining and overlapping. With proper tuning, a pipelined implementation usually 

gives the best performance when the communication is bandwidth bound. Some research 

projects, such as ACCT [14, 13] or MagPIe [11, 10], use this approach to design their inter-

node collective communication libraries. 

When implementing our generic, collective communications library, we use only MPLSend 

and MPl_Recv for blocking implementations, and use MPLIsend and MPTJrecv for non-

blocking implementations. We did not encounter any problems in porting our implementa­

tions to different platforms and overall performance was not impacted by this choice. Some 

approaches used MPLRsend to implement collective communications, we consider it not real­

istic to be used in real problems. MPI-Rsend assumes that the corresponding receive is already 

posted. For a scientific application that is using collective communications, the assumption 

that a certain process finishes its computation stage earlier than another process can be too 

restrictive. 

3.3.2 The Intra-node Communication Layer 

The existing generic approaches on this layer, as mentioned in the previous chapter, are 

to use the point-to-point based collective communication algorithms for the inter-node layer. 

Point-to-point communications can be through the communication network, or through shared 

memory send/receive. With the shared memory collective communications we developed in 

the previous chapter, there are three generic methods on this layer. We have discussed the 

detail of each approach in the previous chapter. In Figure 3.2, the bottom layer shows the 

intra-node layer communications; each block represents a method on this layer. 
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3.3.3 Inter-node/intra-node Overlapping Mechanisms 

Most collective communication algorithms developed during the last decades focus on the 

top layer with the assumption that each node has one processor. Golebiewski et al. [18] and 

Kielmann et al. [11, 10] developed collective communication algorithms for two communica­

tion layers by utilizing the difference of communication latency between two layers. Their 

algorithms are implemented with point to point communications on both layers, without over­

lapping. MagPIe provides an overlapping mechanism on the inter-node/intra-node layer, but 

the overlapping mechanism is also based on point-to-point communications. 

The approach by Tipparaju et al. [9] that uses RDMA functions provided by LAPI, as 

mentioned earlier, is a platform specific approach for IBM platforms. Since our final goal is an 

automatic tuning system for different SMP clusters, our first idea was to replace the platform 

specific RDMA provided by LAPI with existing generic RDMA libraries. 

3.3.3.1 RDMA Functions in Other Libraries. 

There are two libraries that provide generic RDMA functions on different platforms: MPI-

2 [67] and the Aggregate Remote Memory Copy Interface (ARMCI) [80, 81]. Tlie MPI-2 

standard was first, released in 1996, and only recently have the RDMA features been regarded 

as mature. ARMCI provides similar RDMA functions, but with much simpler rules than the 

complex rules set by MPI-2 standard. 

At the moment, the two generic RDMA approaches pose difficulties for using them to 

implement generic inter-node layer collective communications. The major reason is that a 

memory segment must first, be registered to be used by RDMA functions. Data in a memory 

segment which is allocated by malloc() or calloc() must be copied to a registered memory 

segment to be accessible to RDMA functions. This means that if we implement non-blocking 

collective communications using these generic RDMA funct ions, we would need one extra copy 

oil bot h the sender and receiver sides. This could lead to performance degradation. Requiring 

an end-user to allocate memory using the functions provided by these RDMA libraries would 

be asking them to go through their entire MPT application and make changes accordingly. This 
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is both unrealistic and error-prone. For these reasons, we have chosen not to use RDMA to 

implement mechanisms for overlapping inter-node/intra-node communications. 

3.3.3.2 The Overlapping Mechanisms 

Another approach is to modify existing non-blocking segmented implementations on the 

inter-node layer to overlap inter-node/intra-node communications. The idea is very straightfor­

ward: When processing a collective communication, the group coordinator posts non-blocking 

sends for a message and then starts shared memory collective communications. When a non-

blocking receive is posted, shared memory collective operations can be started as soon as a 

message segment is received. At the same time the communication layer can continue re­

ceiving the other message segments. In other words, we can treat shared memory collective 

communications as computation. 

The major difficulty hidden behind this seemly simple strategy is that when using MPI 

non-blocking calls we cannot merely overlap the entire message segment as in Tipparaju's 

approach. Let g(m) be the gate value, and os(m) be the send overhead of sending a message 

of size m as defined in parameterized LogP model [11, 10]. When using non-blocking sends 

to send a segment, the next segment of size m can not be sent before g(m). The overhead 

os(m) is usually smaller than g(m), thus the best theoretical interval for overlapping is g(m) 

- os(m). When we start shared memory collective operations after posting a non-blocking 

send, it is very possible that the cost of the shared memory collective communications of size 

m is larger than g(m) - os(m). Simply overlapping a whole segment may delay sending the 

next message segment. Therefore, when using MPI non-blocking functions to overlap inter-

node/intra-node communications we also have to consider overlapping only partial message 

segment. On the other hand, when communications are latency bound, using non-blocking 

segmented implementations can only make the performance worse since overhead is higher: 

thus the best approach may be to not overlap at all. 

This lead us to construct the programming model outlined in Figure 3.2. The dashed lines 

indicate existing generic approaches to design collective communications on SMP clusters. 
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Figure 3.4 Overlapping inter-node/intra-node communications for broad­

cast 

The solid lines are new generic approaches we added. For example, blocking implementations 

(either whole message or segmented) cannot be combined with any overlapping mechanism, 

but they can still take advantage of using shared memory collective communications on the 

intra-node layer to improve overall performance. 

The programming complexity of implementing collective communications in Figure 3.2 

is roughly increasing from left to right, (with the exception of non-blocking and segmented 

blocking on the inter-node layer). For a dashed line in Figure 3.2, inter-node layer collective 

communications can be used directly on the intra-node layer. For a solid line, new algorithms 

or implementat ions are required for good performance. 

3.4 Implementations of Collective Communications and Experimental 

Results 

The four most commonly used algorithms for inter-node collective communication are de­

scribed in an earlier section. Each has strengths and weaknesses under different circumstances; 

some may even be entirely unsuitable for a given collective operation. In this section we dis­

cuss our opt imizat ion of some collect ive operations on SMP clusters base on the programming 

model outlined in Figure 3.2. Our focus is on how we design overlapping versions of these 

collective communicat ions. 
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3.4.1 Broadcast 

Most existing MPI implementations of broadcast use a blocking implementation of a bi­

nomial tree algorithm on both layers without overlapping communication at different levels. 

ACCT uses segmented non-blocking implementation of different algorithms, but only for the 

inter-node layer. MagPIe measures the difference of the gate value and overhead between 

two communication layers, and derives a communication tree accordingly. In their overlapping 

mechanisms, an inter-node point-to-point communication overlaps an intra-node point-to-point 

communication, so we regard it as a generic overlapping mechanism for a whole message seg­

ment. 

Our broadcast implementations cover almost every path in the programming model in 

Figure 4.5, which covers most of the existing approaches. Our new generic approach is to 

overlap inter-node communications with shared memory collective communications. 

Figure 3.4 outlines the mechanisms to overlap inter-node/intra-node communications for 

broadcast. The root, node (1) posts a non-blocking send(s) of a segment, starts (2) the shared 

memory broadcast,, and then repeats (1) and (2) until the last segment is processed. The last 

step (3) is executed if the shared memory broadcast segment size is smaller than the segment 

size for the inter-node layer broadcast. Intermediate nodes initially (1) post all non-blocking 

receives. Once a segment is received, it (2) posts a non-blocking send for this segment and then 

(3) starts a shared memory broadcast. The intermediate nodes repeat (2) and (3) until the last 

segment is processed and then finish the operation (4) if another shared memory broadcast 

is required. Leaf nodes operate in the same sequence as intermediate nodes, but without 

forwarding message segments: thus they (1) post non-blocking receives, (2) wait for a segment 

to be received and then start the shared memory broadcast, repeating (1) and (2) until the 

last segment is processed, and (3) process t he last, shared memory broadcast, if necessary. If a 

node has multiple child nodes (such as in a binomial or binary tree broadcast), it will post all 

non-blocking sends to all child nodes before starting the shared memory broadcast. 

Figure 3.5, 3.6, and 3.7 show the results of different broadcast implementations with an 8 

MB message on 3 different, platforms. Implementation 1 is a blocking implementation on both 
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Figure 3.5 Performance comparison of different broadcast implementations 

on the IBM Cluster, using 8MB messages 

layers (most MPI broadcast uses this approach). Implementation 2 is a non-blocking segmented 

implementation on both layers (the same approach as ACCT and MagPIe). Implementation 

3 uses the blocking implementation on the inter-node layer and a shared memory broadcast 

oil the intra-node layer (the same as in our previous work [113]). Implementation 4 uses the 

segmented non-blocking implementation on the inter-node layer and overlaps with the shared 

memory broadcast on the intra-node layer. In short, we can look at implementations 1 and 2 as 

existing generic approaches, while implementat ions 3 and 4 represent new generic approaches 

in the programming model. 

From Figure 3.5, 3.6, and 3.7 we can see that layers of optimization have different effects on 

different algorithms. Implementation 2 great ly improves performance on all platforms for the 

chain tree algorithm. Implementat ion 3 provides good performance improvement only when 

the number of processes per node is large enough such as on IBM SP (16 processors per node). 
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Figure 3.6 Performance comparison of different broadcast implementations 

on the Intel Xeon Cluster, using 8MB messages 

Implementation 4 provides the best performance across all three platforms. Overlapping for 

the chain tree broadcast can hide almost all the cost of shared memory broadcast on the IBM 

SP. 

For the binary tree algorithm, each layer of optimization provides a certain degree of per­

formance improvement. Implementation 4 provides the best performance on the IBM SP and 

the Intel cluster. In fact, the overlapping version of the binary tree and chain tree algorithms 

provide similar performance on all three platforms. 

As for binomial tree algorithm, although implementation 1 provides better performance 

than the blocking version of the other two algorithms, different optimizations show only very 

limited performance improvement and sometimes even performance degradation. If our opti­

mization stops at implementation 2 as in existing generic optimizations, the binomial tree still 

performs better than the other algorithms. However, when we opt imize to implementation 4, 
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Figure 3.7 Performance comparison of different broadcast, implementations 

on the G4 Cluster, using 8MB messages 

our binomial tree implementation always performs worse than the other two algorithms. 

Figure 3.8, 3.9, and 3.10 show the best results selected from our implementations against 

MPLBcast, on each platform. Depending upon the message size, the performance improvement 

is 20% to 46% on the IBM SP; 27% to 63%, on the Intel cluster, and 27% to 51% on the G4 

cluster. Table 3.1 shows the details of which implementation is selected for a given message size 

on the three platforms. Except for message sizes less than 8KB on the G4 cluster and between 

1KB and 8KB on the Intel cluster, our new generic optimizations show better performance 

than the existing approaches. Worth noting is t hat implementation 4 of both the chain and the 

binary tree algorithms performs much better than the two stage broadcast, (scatter, all-gather) 

used by MPICH for broadcasting large messages. 

The performance of an implement ation is a funct ion of {algorithm, number of nodes, number 

of processes/processors per node, message size, segment size, a,nd overlapping size} ; to the best 
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Performance comparison of broadcast, 16x16 MPI tasks, IBM cluster 
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Figure 3.8 Performance comparison of broadcast on the IBM Cluster 

of our knowledge there is no such performance model that covers inter-node communications 

with shared memory collect ive communications. A new performance model is needed to explain 

the effects of layers of optimization on different algorithms, and we will discuss this new 

performance model in the next chapter. 

3.4.2 Scatter and Gather 

Not all collect ive operations can take advant age of overlapping inter-node/intra.-node com­

munications. When the amount of data for inter-node communications is substantially larger 

than the intra-node communication data, the performance improvement can be very small. 

Consider scattering a message of 8M to 4x4 processes: the possible overlapping data, size is 

only 1/15 of the intra-node communication data size. The cost of an intra-node scatter of 

512K is almost negligible compared to the cost, of sending out 7.5M of data to the inter-node 
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Performance comparison of broadcast, 16x2 MPI tasks, Intel Xeon cluster 
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Figure 3.9 Performance comparison of broadcast on the Intel Xeon Cluster 

layer. For this reason we did not implement the overlapping version of scatter or gather. How­

ever, for scattering or gathering small messages, we can still use concurrent memory access for 

intra-node scatter or gather to improve the performance since latency can be reduced. The 

best strategy is to use the blocking implementation for inter-node scatter and shared memory 

operations for intra-node scatter. We have shown the performance enhancement in one of our 

work [113] and in the previous chapter. 

3.4.3 All-gather 

It is not realistic to implement a collective communication following every path in the 

programming model in Figure 3.2. The reason we implemented broadcast following most 

paths in the programming model is that the results of broadcast can provide basic performance 

metrics for the other collective communications and give us insight into different algorithms. 
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Figure 3.10 Performance comparison of broadcast on the G4 Cluster 

Before we optimize a collective communication for SMP clusters we use the existing per­

formance data to evaluate if we can expect improved performance. For example, wit h the 

all-gather operation in this section we measured the costs of shared memory gather, shared 

memory broadcast and intra-node broadcast algorithms. By comparing the performance re­

sults of these operations and analyzing the potential performance enhancement, we could decide 

if all-gather should be optimized. 

The algorithms for all-gather implemented in MPICH are the binomial tree algorithm for 

small messages and the ring algorithm for large messages. Tuning is required to determine 

when to use the ring algorithm and when to use the binomial algorithm. However, through 

experiments we found that, the binomial free algorithm is used on all three clusters for all 

message sizes, which leads to very bad performance especially when the message size is large. 

For example, on the IBM SP, an all-gather of an 8MB message on 16x16 MPI tasks using the 
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04 *Binomial(b, novp, shm) * Binomialfb. novp, shm) Binomialfb, novp, msy) 

*Binomial(b, novp, shm) * Binomialfb, novp, shm) Binomialfb, novp, msy) 
2.5(7 *Binomial(b, novp, shm) *Binomial(b, novp, shm) Binomialfb, novp, msy) 

*Binomial(b, novp, shm) * Binomialfb, novp, shm) Binomialfb, novp, msy) 
*Binomial(b, novp, shm.) Binomial(nb. novp. msy) Binomialfb, novp, msy) 
* Binomialfb, novp, shm) Binornial(nl), novp, msy) Binomialfb, novp, msy) 
* Binomialfb, novp, shm) Binomialfnb. novp, rn.sg) Binomialfb, novp, msy) 
* Binomialfb, novp. shm) Binomial(nl), novp, msy) * Binary (nb, ovp, shm) 
*Binary(nb, novp, shm) * Binary (nb, ovp, shm) * Binary (nb, ovp, shm) 
* Binary (nh. novp, shm) * Binary (nb, ovp, shm) *Binary(nb, ovp, shm) 

*Binomialfnb, novp, shm) * Binary (nb, ovp, shm) *Binary (nb, ovp, slun) 
j.Y)072 *Binomialfnb, novp, shm) * Binary (nb, ovp, shm) * Chain (nb, ovp, shm) 

*Binomial(nb. novp, shm) * Binary (nb, ovp, shm) * Chain (nb, ovp, shm) 
* Binary (nb, novp, shm) * Binary (nb, ovp, shm) * Chain (nb, ovp, shm) 
* Binary (nb, novp. shm) *Binary (nb, ovp, shm) *Cha.m(nb, ovp, shm) 
* Binary (nb, novp, shin) * Binary (nb. ovp. shm) * Chain (nb, ovp, shm) 

* Binary (nb, ovp, shm) * Binary (nb. ovp, shm) * Chain (nb, ovp, shm) 
* Binary (nb. ovp, shm) * Binary (nb, ovp, shm) * Chain (nb, ovp, shm) 

Table 3.1 Best implementations for broadcasting different message size on 

three platforms. The first parameter represents inter-node imple­

mentation: lib for non-blocking segmented, b for blocking. The 

second parameter represents if it overlaps inter-node/intra-node 

communications, ovp: overlap, novp:no overlap. The third pa­

rameter represents use shared memory or message passing for 

intra-node communication, slim: use shared memory, msgaise 

message passing. A * means the implementation is provided by 

new generic approaches. 

default MPI_Allgather implementation is four times slower than MPICH's ring implementation. 

For this reason the performance comparison in this section is intended to show how much we 

can improve over the MPICH ring algorit hm for all-gather operat ions on large messages. For 

small messages we also use the binomial tree algorithm. 

MPICH uses MPLSendrecv to implement the ring all-gather; t he implementation does not 

allow overlapping so in implementat ion 2 we replaced the MPLSendrecv with an MPI Jsend/MPI_Irecv 

of the whole message. Implementation 3 of all-gather extends this to the segmented non-

blocking approach. 

The mechanism to overlap inter-node/intra-node communication are shown in Figure 3.11. 
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m 

shm_bcasl shm_gather shm beast shm gather 
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i f i \  m 

shm_bcast shm_gather 

Figure 3.11 Overlapping inter-node/intra-node communications for 

all-gather 

Each node starts with (1) a shared memory gather to the group communicator, (2) posts a non-

blocking receive, (3) posts non-blocking send, and (4) starts a shared memory broadcast. It 

repeats (2)-(3)-(4) until the last segment is received by all processes. This is our implementation 

4. 

We tested all-gather of message sizes from 512K to 8M and, depending on the message size, 

the overall performance improvement is 18% to 69% on the IBM SP cluster, 44% to 54% on the 

Intel cluster, and 11% to 69% on the G4 cluster. Figure 3.12 and 3.13 show the performance 

improvements by adding layers of optimization on the three platforms. 

From the results, we can observe the following: 

1. Existing generic techniques to optimize collective communications do not provide opti­

mal performance on SMP clusters. By taking the SMP architecture into account, the 

performance of collective communications can be significantly improved by new generic 

optimizations. 

2. Using shared memory collective communications is the key to performance improvement 

on SMP clusters. It reduces the latency and allows overlapping of inter-node/intra-node 

communications. 
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Figure 3.12 Performance comparison of all-gather on t he IBM Cluster 

3.5 Summary 

In this chapter we have shown that it is possible to design generic implementations of 

collective operations that take advantage of both shared memory collective communications 

and overlapping inter-node/intra-node communications. Several collective communications 

are implemented and our experimental results show that, after proper tuning, the performance 

improvement over the existing implementat ions is significant on t hree different, SMP clusters. 

While collective communication algorithms on the inter-node layer may be regarded as ex­

hausted, by taking the SMP architecture into account and using implementation techniques 

generically available on all platforms, we still can see impressive performance improvement; 

even if each SMP node has only two processors. This kind of collective communications on 

SMP clusters are composed with shared memory collective communications on the intra-node 

layer and point-to-point communications on the iliter-node layer; we call them mixed mode 
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Allgather, 16x2 MPI tasks, Intel Xeon cluster 
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Figure 3.13 Performance comparison of all-gather on the Intel Xeon Clus­

ter and the G4 Cluster 
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collective communications. 

The methods developed in this chapter are based on MPI blocking send/receive and non-

blocking send/receive. If a different message passing library provides the same functionalities 

for point-to-point communications, they can be used to replace the MPI functions we are using 

in the current implementations. 

The price of portability to achieve good performance is that many parameters require tun­

ing. We provide a framework to design mixed mode collective communications on SMP clusters 

in this chapter, and in the next chapter we will describe a new performance model that ex­

tends existing performance models to describe the char acteristics and predict the performance 

of mixed mode collective communications. Several tuning strategies that are developed based 

on the new performance model will also be discussed. 
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CHAPTER 4. PERFORMANCE MODEL AND TUNING STRATEGIES 

4.1 Introduction 

In the previous chapter we have developed new approaches to utilize the architecture of 

SMP clusters for collective communications. However, our approaches require the tuning of 

many parameters. Without a good tuning mechanism, the only tuning method is to exhaus­

tively test every setting and find the best one. Such exhaustive tuning process is very time 

consuming and is not, realistic to be used in practical systems. 

An approach to facilitate automatic tuning process, which is taken by MagPIe and ACCT, 

is to use a performance model to predict the performance of collective communication imple­

mentations, and based on the prediction results select, a certain range of data for run time 

testing. The performance model of ACCT is based on parameterized LogP model used by 

MagPIe, which in turn is based on the other communication models. In this chapter we first, 

introduce several existing performance models for parallel communications, then we discuss our 

performance model that covers overlapping of inter-node/shared memory collective communi­

cations. We show how this model can describe the characteristics of mixed mode collective 

communications, and how to utilize it to develop t uning mechanisms for mixed mode collective 

communications. 

4.2 Performance Models for Parallel Communications 

There are some existing parallel programming models that are fundamentally different from 

the parallel model we are using to design collective communications in this dissertation. For 

example, BSP model [2] also divides a parallel algorithm into computation and communication 

stages. However, in BSP model every communication stage is an nil-to-all communication 
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instead of point-to-point communications as in the other models. Every performance model 

discussed in this section is based on point-to-point communications. 

4.2.1 The Hockney Model 

Figure 4.1 shows the most commonly used performance model, the Hockney model [1] 

(sometimes it is called permutation model). This model uses four parameters: start,up latency 

Of, the inverse transmission rate /?, the message size m, and the total number of processors p. 

Under this performance model, the cost, of using flat,-tree algorithm to broadcast a message 

of size m is (p-1) * (a + ft * rri) since the root needs to send the message p-1 times to p-1 

processes, and each time it costs (a + (3 * m). A binomial tree broadcast of a message of size 

m thus costs logp * (a + ft * m). 

This model is easy to be understood, but it is too simplified to describe different, implemen­

tations of a collective communication, and can be used only when every collective communica­

tion is implemented with blocking calls. When a. collective communication is latency bound, 

blocking implementations usually perform better than non-blocking implementations and the 

Hockney model can provide very good predictions for their performance. However, when a 

collective communication is bandwidth bound, pipelining may be required to achieve optimal 

performance and non-blocking calls are usually used to implement the pipelined version of a 

collective communication algorithm. Under this case the Hockney model is not suitable for 

per for n îan ce pred i ct ion. 

4.2.2 The LogP Model 

The LogP model [3], as shown in Figure 4.2, introduces one more parameter g. the gate 

value, and I he meanings of some parameters are slightly different, from the Hockney model. In 

the LogP model, there are four parameters: L. the latency for sending a message between two 

processes; o: the overhead for sending or receiving a message; g: the time that the network 

is occupied, i.e., a sender can not send a message within g time after the previous message is 

sent, and P, the number of processes. Figure 4.2 shows the cost of sending a message from one 
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.time to send the next message 

sender alph 

time 

receiver 

'eta * k 'da * k 

Figure 4.1 The Hockney model. Sending a message of k bytes costs a + 

sender 

time 

receiver 

Figure 4.2 The LogP model. Sending a message of k bytes costs o + 

(k-l)*max{o,g} + L + o 

process to another process under LogP model. 

Originally the LogP model was proposed as a model that allows overlapping of communi­

cation and computation (the time for overlapping is g - o); however, due to its complexity for 

designing parallel applications, LogP model is often used as a performance model for designing 

communication algorithms instead of designing parallel applicat ions. 

4.2.3 The LogGP Model 

The LogP model assumes a message is sent in the minimum data type of a particular 

machine, making it good for measuring communications of small message size. When sending 

a, large message, the prediction of the LogP model is not accurate since a message can be sent 
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Figure 4.3 The LogGP model. Sending a message of k bytes costs o + 

I x(m) p s(m) 

sender 

time 
r(m) 

receiver 

L + g(m) = r(m) 

Figure 4.4 The Parameterized LogP (P-LogP) model. 

in a large chunk in modern high speed network instead of just the minimum data type. To 

remedy this inaccuracy, the LogGP [4] model was proposed. Another parameter G is added 

into the LogP model that stands for gate value per byte for large messages. When the size of 

a message is small, the LogGP model is the same as the LogP model. Figure 4.3 shows the 

cost of sending k bytes in LogGP model. 

4.2.4 The Parameterized LogP Model (P-LogP Model) 

The LogGP model assumes a linear model for calculating G. The work by Kielmann [10] 

shows that this is not the case in real applications since the value of G changes with the 

communicating message size. Thus the parameterized LogP model introduces g(m). which 
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stands for the time a sender has to wait to send the next message of size m. The P-LogP 

model also distinguishes the sender overhead os(m) from the receiver overhead or(m), while in 

LogP or LogGP model o stands for the overhead of both sender and receiver. The meaning of 

L also is slightly different than as in LogP or LogGP since in the P-LogP model L includes the 

overhead os. Both LogP and LogGP models assume there is only one layer of communication, 

thus is not suitable for communications with hierarchy. The Parameterized LogP model was 

designed targeting for cluster of WAN, which have communication hierarchy and the latency 

and bandwidth between two layers of communication are at least two order of magnitude. 

By measuring the cost of os(m), or(m), g(rri) and L on different layers, it can deduce the 

overlapping degree for a collective communications. When applying this model into cluster of 

SMPs, it can be used only when the intra-node communications are done with message passing. 

Since we are using shared memory collective communications on the intra-node layer, we can 

not use parameterized LogP model to predict the performance of our collective communication 

implementations. The parameterized LogP model is shown in figure 4.4. 

4.2.5 The Other Performance Models 

At least, two performance models attempt to model network contention, the C3 model [5] 

and the LoGPC model [7j. Both models made assumptions on the restrictions of the pattern 

of network contention. MPI assumes fully connected network between compute nodes, and we 

also use this assumption to design our performance model. 

The models introduced in this section are by no mean complete. There are many different 

communication models for different purpose, and we introduce those that are most related to 

our research. 

4.3 The Simplified Programming Model 

When designing our collective communications, we mixed shared memory collective com­

munications with point-to-point communications. Since there are many performance models 

for point-to-point based collective communications, and our mixed mode collective communica-
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Figure 4.5 The simplified programming model of mixed mode collective 

communications on SMP clusters. 
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lions start with inter-node, point-to-point based collective communications followed by shared 

memory collective communications, our approach is to extend one of the existing performance 

models to cover mixed mode collective communications. 

The programming model described in Figure 3.2 lists every possible approach to design a 

collective communication on an SMP cluster. It is not practical to design a collective commu­

nication that follows every path in Figure 3.2. Moreover, a different path may need a different 

performance model to predict the communication latency. In this chapter we use a simplified 

programming model that shows possible paths for latency bound communications and band­

width bound communications, and the performance models we will be discussing are for the 

paths in this simplified model. Figure 4.5 outlines the simplified programming model of mixed 

mode collective communications on SMP clusters. 

As described in the previous chapter, there are three layers: the inter-node communication 

layer, the intra-node communication layer, and the overlapping mechanisms. Each SMP node 

has one process (group coordinator) in charge of communications with the other nodes. A col­

lective communication is processed in two stages: first communications are processed between 

the group coordinators on the inter-node layer, then on the intra-node layer the communica­

tions are processed bet ween a group coordinators and the processes within the same node. For 

collective operation such as gather, the order of communications is reversed. 

4.3.1 Latency Bound Communications 

Blocking send/receive incur less software overhead than non-blocking send/receive; the 

major advantage of sliared memory collective communications is low latency for small message, 

as shown in one of our work [113], Thus for latency bound communications [39], we use 

blocking implementations on the inter-node layer, combined with shared memory collective 

communications on t he intra-node layer without, overlapping. This is the dashed line in Figure 

4.5. 
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Figure 4.6 The performance prediction and actual time of mixed mode bi­

nary tree broadcast without overlapping, using 8x16 MPI tasks 

on the IBM cluster. 

4.3.2 Bandwidth Bound Communications 

For bandwidth bound communications, we use segmented non-blocking implementations 

on the inter-node layer to take advantage of pipelining. Using non-blocking calls also make it 

possible to design mechanisms to overlap inter-node/intra-node communications. 

The overlapping mechanism is the same as described in the previous chapter. There are 

three possible overlapping mechanisms: overlapping a whole message segment (total overlap­

ping), overlapping partial message segment (partial overlapping) and no overlapping at all. 

They are the solid lines in the center of Figure 4.5. We have discussed the reason to take 

total overlapping and partial overlapping approaches in the previous chapter. There are times 

when no overlapping may provide the best performance and we also include it in the simplified 

programming model. 

Performance prediction time -
Actual time -
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4.3.3 Performance Modeling of Non-overlapped Approaches 

When there is no overlapping between inter-node/intra-node communications, the per­

formance prediction is straightforward : the cost of the inter-node communications plus the 

cost of the shared memory collective communicat ions. We can measure the cost of collective 

communications on each layer individually then add them together. 

Figure 4.6 shows the comparison of this prediction and the actual run time of binary tree 

broadcast. We also measure the performance of the other algorithms and the results show that 

the prediction of this approach is very close to actual run times. Since there is no overlapping, 

we only need to tune the inter-node layer implementations (segmented non-blocking) to achieve 

the optimal performance. In this case we can use the methods by Kielmann et al. [11] or 

Vadhiyar et al. [6] to reduce tuning time. 

4.3.4 Performance Modeling Issues of Overlapping Approaches 

For the rest of this chapter, "mixed mode collective communications" refers to mixed 

mode collective communications with overlapping unless specified otherwise. "Inter-node 

collective communications" means the pipelined version of collective communications on the 

inter-node layer, between group coordinators only, and without any shared memory collective 

communication. 

For mixed mode collective communications, since there is no performance model to describe 

this type of collective communications, our only choice was to exhaustively examine every 

possible setting. With total overlapping, the number of tests required to tune a mixed mode 

collective communication is the same as tuning an inter-node collective communication. For 

example, to tune an inter-node chain-tree broadcast of 8MB message, if the testing starts with 

segment size — 4KB, and double it each step, we need to examine 4KB, 8KB, ..., 4MB, 8MB, 

a total of 12 tests. For mixed mode chain tree broadcast with whole segment overlapping, we 

also need 12 tests and t he testing time is much longer. 

When we allow partial overlapping, the number of tests required for tuning is much larger. 

For a collective communication we need to find the best {segment size, overlapping size} pair 
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J2## 2/## .5)2% 1M 2M 

J02j 0.1!) 0.20 0.17 0.16 0.16 0.15 0.15 0J.? 

204a oj# 0.1!) 0.17 0.16 0.16 0.15 0.15 0.17 
jOW? OJ* OJK 0.17 0.16 0.16 0.15 0.15 0.17 

*1V2 OJ# OJd OJg 0.15 0.16 0.15 0.15 0.17 

0J6 0J4 0.M 0.15 0.16 0.15 0.15 0.M 

,%76'X - 0.16 0.15 OJj 0.15 0.15 0.16 oja 
- - OJj OJj 0.15 0.15 0.16 

J.YJ072 - - - 0.14 0.16 0.16 0.16 0.1!) 

26'2/^ - - - - 0.16 0J7 0.1 S 

,%%2M - - - - - OJd 0.2J 0.22 
- - - - - - 0.2.9 .0.27 

mm/# - - - - - - - 0..# 

Table 4.1 A performance mat rix of mixed mode collective communications. 

for every message size to achieve the optimal performance. If we list all possible combinations 

of this pair, using power of two for both segment size and overlapping size, we can form a 

performance matrix as shown in Table 4.1. The columns represent segment size, and the rows 

represent overlapping size. In Figure 4.1 the segment size for testing are from 16KB to 2MB, 

and the overlapping size are from 1KB to 2MB. An entry in the performance matrix can be any 

data of interest. For example, in Table 4.1. entry (2,5) in the performance matrix shows the 

performance for broadcasting a 2MB message, using a segment size of 256KB on the inter-node 

layer, and the overlapping size for a segment is 2KB. Since the overlapping size is always less 

than the segment size, only the entries on the upper-right section of the performance matrix 

have values. 

For a mixed mode collective communication, every message size has one such performance 

mat rix indicating the number of tests needed for tuning. Without a proper performance model, 

we are forced to examine every possible entry in the performance matrix. If there are m rows 

and 77, columns in a performance matrix, we need to examine at least (m*n)/2 entries just 

for a certain message size, under a particular setting. Clearly, the number of tests required is 

large and the tuning time is not acceptable. Without a proper tuning mechanism as part of 

the support infrastructure it is not practical to use the programming model in Figure 4.5. 
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Figure 4.7 The performance of mixed mode chain tree broadcast of 8MB 

message on the IBM cluster (8x16 MPI tasks). 

4.4 The Characteristics of Mixed Mode Collective Communications 

To model the performance of mixed mode collective communications, we first address the 

following question: when tuning a mixed mode collective communications, given different 

{segment size, overlapping size} pairs, if we fix segment size and vary overlapping size, how 

does the performance change with the increase of overlapping size. 

4.4.1 Experimental Results of Mixed Mode Chain Tree Broadcast 

Figure 4.7 and 4.8 show the performance of broadcasting 8MB messages using mixed mode 

chain-tree on the IBM cluster (8x16 MPI tasks) and on the Intel cluster (8x2 MPI tasks). The 

tests that use the same segment size are put together in a group, and different bars in a group 

represent different overlapping sizes. The the height of a. bar representing the run time of that 

setting. For example, for the group of 1MB. it means the segment size is 1MB for broadcasting 

8MB message. The bars within 1MB group from left to right represent overlapping size of a 

1MB message is 1KB, 2KB, and so on up to 1MB. 
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Figure 4.8 The performance of mixed mode chain tree broadcast of 8MB 

message oil the Intel Xeon cluster (8x2 MPI tasks). 

From Figures 4.7 and 4.8, we divide the performance curves into three different types: The 

first, type is when performance improves roughly with the increase of overlapping size. On 

the IBM cluster this is up to 128KB of segment size; on the Intel cluster it is up to 1MB. 

The second type is when the performance is irregular, neither always increasing nor always 

decreasing with the increase of overlapping size. The segment size of 256KB on the IBM 

cluster and 2MB, 4MB on the Intel cluster belong to this type. The third type is when the 

performance decreases with the increase of overlapping size; this happens on the IBM cluster 

when the segment size is larger than 256KB, or on the Intel cluster when the segment size 

is larger than 4MB. Apparently, for mixed mode collective communications, the performance 

does not always get, better or get worse with the increase of overlapping size. 

The best segment size for inter-node collective communications does not always provide the 

best performance for mixed mode collect ive communications. In Figure 4.9, the best, segment 

size for the inter-node chain tree is 1MB, but for mixed mode chain tree t he best, segment size is 

64KB. Also, the performance of mixed mode collective communications (more processes) may 
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Figure 4.9 The performance curves of mixed mode chain tree broadcast 

(8x16 MPI tasks) and inter-node chain tree broadcast (8x1 MPI 

tasks) of 8MB message on the IBM cluster. 

be better than inter-node collective communications (fewer processes), such as with a segment 

size of 16KB in Figure 4.9. 

4.5 Performance Modeling 

The major challenge in designing a performance model for mixed mode collective com­

munications is to include memory operations into the model. In previous chapters, a shared 

memory collective communication is composed of several shared memory operations. Each 

shared memory operation can in turn be decomposed to memory operations as detailed as op­

erations involving cache coherence mechanisms. However, a. performance model for collective 

communications that goes into such details is too complicated and is not preferable. 

We designed our shared memory collective communications based on a generic shared 

memory architecture [113, 115]. Our performance model thus is also on top of this generic 

SMP architecture. We look at the total cost of a shared memory collective communication 
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Figure 4.10 The performance model for mixed mode collective communi­

cations. 

instead of the composition of shared memory operations, thus the cost of a shared memory 

collective communications is primarily a function of message size. 

Among the existing performance models, the parameterized LogP model [11] has many 

parameters that are also functions of message size. It also provides the tools to measure t hose 

parameters. Since the cost of a shared memory collective communication is a function of 

message size, we decided to develop our model base on the parameterized LogP model. 

4.5.1 The Performance Model 

The parameters we use in this model are as follows. 

p: number of nodes. 

L: latency of sending a, message from one process to another process on the inter-node layer. 

M: total message size. 

rrt,: the size of a message segment for the inter-node collective communications. 

k: total number of segments, it equals M/m,;. 

gate value, also means the minimum interval between sending or receiving two consec­

utive messages of size mn on the same node. 
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os(mi): software overhead of sending a message of size mv 

or (mi): software overhead of receiving a message of size m%. 

ms: data, size of the shared memory operation that is overlapping with inter-node communi­

cations. 

mr: data size for the remaining message segment to be processed with the last shared memory 

operation. mr  = M - ms  *k. 

smcc(ms): the cost of shared memory operation of message of size ms. 

smcc(m r): the cost of the last shared memory operation. 

ovp(m s): overlapping penalty for overlapping inter-node/shared memory collective communi­

cations, when the overlapping size is m s .  

f(M, nii, ms): total latency of the operation of size M, with inter-node layer segment = m,, 

and overlapping size for each segment -  mg .  

Figure 4.10(a) outlines sending a segment front one node to another node in this model. 

The sender spends os(rrii) overhead on sending a message segment of size m*. It takes g (mi) 

time to send the segment of size m*. After os(rrii) it starts the intra-node collective operations 

of message size ms, and this takes smcc(ms) time. If ms is less than rrii, it will require another 

smcc(mr) on the remaining segment to complete the operation. Thus the total cost on the 

sender is max(g(rrii), os(rrii) + sm.cc(ms)) + srncc(mr). The receiver waits L to receive the 

first byte of the message arid y(rn,i) to receive the whole message segment, then it starts shared 

memory collective communication. 

What makes mixed mode collective communications less predictable is the cost due to 

overlapping of the two communication layers, the overlapping penalty ovp(ms). If is possible 

that the segment size and the overlapping size are both very large, and the bandwidth of 

memory bus can not sustain this high amount of data traffic. For example, if the sender posts 

a non-blocking send of a 8M message then proceeds with shared memory communications of 

8MB message, it is possible that the MPI layer can not even access the data in the memory 

because the memory bus is occupied by shared memory collective communications; the MPI 
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Figure 4.11 The overlapping mechanism of chain-tree broadcast. 

layer has to wait until it has access to the memory bus. Thus with overlapping penalty the 

receiver can not receive the whole message segment until L + g (8MB) + ovp(SMB). Through 

the experiments we found that when the overlapping size is ms for a message segment, the 

overlapping penalty can be as high as smcc(ms). The receiving node can not start shared 

memory operation until the whole segment is received. The cost in Figure 4.10(a), when there 

is no overlapping penalty, is: 

f(rrii,mi,m s) = L + g(rrii) + smcc(m s) + smcc{m r) (4.1) 

and in Figure 4.10(b), when there is overlapping penalty, is: 

f(mi,mi,m s) = L + g(rrii) + ovp(m s) + smcc(m s) + sm,cc(m r) (4.2) 

4.5.2 Example: Chain Tree Broadcast 

For ease of presentation, we only discuss the chain tree broadcast as an example in this 

chapter. The other algorithms and collective operations can be derived via a similar approach. 

Also, the performance equations in this section focus on how much "extra cost" is added on 

the inter-node collective communications when we allow overlapping. The cost equations for 

inter-node collective communications are discussed in other work [11, 6] and we do not repeat 

that analysis here. 

Figure 4.11 shows the mechanism of mixed mode chain tree broadcast. It is the same as 

the one in Figure 3.4. We repeat it here for easy of reading and comparison. 

Figure 4.12 shows applying the performance model on mixed mode chain-tree broadcast of 

three nodes, corresponding to a root node, an inter-mediate node and a leaf node. 
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•• remaining shared memory segment, cost = smeefm r) 

Figure 4.12 The performance model of mixed mode chain tree broadcast, 

under different modes, (a) Overlapping mode, a shared mem­

ory collective communication may incur extra cost for send­

ing/receiving messages, (b) Complete overlapping mode, the 

theoretical lower bound, when the cost of every shared mem­

ory collective communication can be hidden by overlapping, 

(c) Penalty mode, the theoretical upper-bound, when a shared 
memory collective communication cause the maximum amount 

of overlapping penalty(srztcc(ms)). 
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In Figure 4.12(a), the cost of a shared memory collective communication can not be totally 

hidden by the overlapping mechanisms. It incurs extra cost because smcc(ms) is greater than 

(g(mi) - os(rrii)), and will cause longer interval time between sending two message segments. 

This interval can be increased from g (mi) to os(m) + smcc(ms). Since there are k-1 intervals, 

the total cost is: 

/i (M, mi,m s) = C + ((os(mi) + smcc(m s)) -  g(rrii)) 

*(k — 1) + smcc(ms) + smcc(mr) (4.3) 

L represents the cost of inter-node chain tree broadcast. The term smcc(m s) is the cost of 

shared memory operation for the last "overlapping" segment on the last node since the cost of 

this shared memory broadcast can not be hidden. The number of segments k cannot be too 

small so the cost of the last smcc(ms) can be amortized through pipelining and overlapping. 

Figure 4.12(b) shows the theoretical lower bound of mixed mode chain tree broadcast. 

In this case the cost of every shared memory operation can be hidden by overlapping inter-

node/intra-node communications (complete overlapping mode), thus the total cost is : 

f2(M :mi,m s) — C + smc,c(m s) + smcc(mr) (4.4) 

Figure 4.12(c) shows the theoretical upper-bound of mixed mode chain tree broadcast. In 

this case overlapping inter-node/shared memory collective communications causes overlapping 

penalty (penalty mode). There are three places where run time are increased: 

1. The cost, of sending a message segment of size can be increased from g(mi) to g(mi) 

+ ovp(ms). There are k segments, thus there is k * ovp(ms) extra cost. 

2. The interval between sending two segments is extended to g (mi) + ovp(m s). There are 

k-1 intervals, so another extra cost of (k-1) * ovp(rn s). 

3. The time for the first byte to arrive the last node is an additional ovp(m s) * (p-2). 
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The total cost under penalty mode is: 

/3(M, mi, m g) = C + ovp(m s) * fc 

+ovp(ms) * (k — 1) + ovp(ms) * (p — 2) 

+smcc(ms) + smcc(m r) (4.5) 

If we use smcc(m s) as the maximum overlapping penalty, equation 4.5 becomes: 

= £ + smcc(m s) * k 

1 smcc(m s) * (& — 1) + sm,cc(rri s) * (p — 2) 

+smcc(ms) + smœ(m r) (4.6) 

4.5.3 Prediction Results and Discussion 

The costs of shared memory broadcast srncc(m) and gate values g(m) on the IBM cluster 

are shown in figure 4.13. Gate values and send overheads are acquired using the tool provided 

by MagPIe [12]. We plug in smcc(ms), smcc(mr), g(nii) and os(rrii) into equations 4.3, 4.4 

and 4.6 to calculate broadcast 8MB message on the IBM cluster(8x16 MPT tasks), the show 

the results in Figure 4.15, 4.16, and 4.17. 

Table 4.2 is the performance matrix with the number in an entry indicates which equation 

provides the best prediction for that entry. A * indicates that all three equations give close 

predictions with error less than 5%. Clearly, when the ratio of (segment size)/(overlapping 

size) is large enough, smcc(mi) is insignificant compared with smcc(mr). In these cases the 

inter-node latency plus smcc(mr) dominates the performance and the predictions of three 

equations are very close. 

Table 4.3 shows the error of the prediction equation in Table 4.2. A negative number 

indicates "under estimate"' while a. positive number means "over estimate". 

On the IBM cluster using 16 processors per node, the cost of shared memory broadcast 

smcc(m) is much larger than the gate value y(m) for most message size as shown in Figure 
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4.13. We speculated that equation 4.3 should give better predictions when it is not under 

penalty mode. However, equation 4.4 (complete overlapping mode) provides the best predic­

tions up to segment size equals 128K. Within this range even complete overlapping equation 

(the theoretical lower bound) over estimates the performance and the error of predictions are 

are all higher than 10%. We will discuss the reason in the next subsection. 

Equation 4.3 is the best prediction only for segment size 256KB and 512KB. When the 

segment size is larger than 512KB, penalty mode equation 4.6 gives predictions very close 

to actually run time. The equation also predicts that within this range, the performance is 

decreased with the increase of overlapping size, as shown in Figure 4.17. 

Given a {segment size, overlapping size} pair, if it is under complete overlapping mode, 

we want the overlapping size as large as possible. The performance thus can increase with 

the increase of overlapping size. The experimental results and our performance equation both 

reflect this characteristics. Once it is not in complete overlapping mode, the performance may 

vary according to smcc(m) and g(rri). If it is in penalty mode, the performance decrease with 

the increase of overlapping size. 

It is possible that a segment may be in overlapping mode when the overlapping size is 

small. When the overlapping size is increased up to a point, it switches to penalty mode. In 

t hat case we can see a performance increase curve followed by a decreasing curve, which is also 

similar to the second type of curve we found in some experimental results. 

On the Intel cluster, g(rrii) - os(nii) is about two times of smcc(rni) as shown in figure 4.14. 

and equation 4.4 gives the best predictions most of time except when the segment size and the 

overlapping size are both large than 4M; the penalty mode equation gives better predictions 

in that case. 

4.5.4 Limitations of the Performance Model 

There are following limitations of this model: 

1. It provides good predictions only when the latency of mixed mode communications is 

higher than the inter-node collective communications. 
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16K 32% J2*% 2%%r am 1M 2M 4M m 
J02j 4-4 4-4 4-4 4-4 * * * * * * 

4-4 4-4 4-4 4-4 * * * * * * 

jOW? 4-4 4-4 4-4 4-4 * * * * * * 

KJ.92 4-4 4-4 4-4 4-4 * * * * * * 

M3Xj 4.4 4-4 4-4 4-4 * * * * * * 

3276# - 4-4 4-4 4-4 4-4 * * * * * 

0.9.930 - - 4-4 4-4 4-4 4.6 4-6 * * * 

J3J072 - - - 4. S 4.3 4-3 4-6 * * * 

202Jjj - - - - 4.3 4-3 4-6 4.6 4-6 * 

,92j2&* - - - - - 4-3 4.6 4.6 4-6 4.6 
J0j&970 - - - - - - 4.6 4.6 4.6 4.6 
mm .92 - - - - - - - 4.6 j.o j.O 
j)Af30j - - - - - - - - 4.6 4.6 
&MS00& - - - - - - - - - 4.6 

Table 4.2 Performance matrix of mixed mode chain tree broadcast on the 

IBM cluster(8x16 MPI tasks). The value in each entry means the 

best prediction equation. A * means all equations give prediction 

with error less than 5%. 

16K 32% J2X# 2.90% .9J2A: 1M 2M HM 
)02j 3*% J 7% 7.7% 0.7% * * * * * * 

20j# 3*% 20% 9J% J.0% * * * * * * 

jOOO 37% 22% j.Y% 2./?% * * * * * * 

20% 2J% j.9% 7..?% * * * * * * 

26% 20% j2% ,9.0% * * * * * * 

3270* - J0% J2% & 2% j.0% * * * * * 

0,9.930 - - 2.7% JJ% -7J% 0.2% -2.7% * * * 

J3J072 - - - J4% -A 3% -J,9% -0.7% * * * 

202Jjj - - - - -2,4% -20% -A.5% 2.7% -4.0% * 

,92j2,M - - - - - -J0% 3.7% 3.7% -5.7% -0.j% 
j0j&970 - - - - - - J2..V% -0.4% -(U% -2.7% 
20.V7j.92 - - - - - - -0.0% -10% -.9.*% 

- - - - - - - - -10% -j.0% 
- - - - - - - - - -3.7% 

Table 4.3 Error of the performance equations in Table 4.2. A positive 

number indicates over estimate while a negative number means 

under estimate. 
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Figure 4.13 Gate values and the cost of shared memory broadcast (1x16 

MPI tasks) on the IBM cluster. 

Our model assumes that the cost of inter-node collective communications (less processes) 

should be less or at least equals to mixed mode collective communications (more processes). 

Theoretically this is true. On some occasions, however, we found that the performance of 

mixed mode collective communications are better than inter-node collective communications. 

For example, segment size 16KB in Figure 4.9, 8x1 MPI tasks using inter-node chain tree 

takes more time than 8x16 MPI tasks using mixed mode chain tree. We speculated this is due 

to MPI implementations. On the IBM cluster posting too many non-blocking calls of small 

messages may degrade the performance. 

To verify this, we used the same implementation of inter-node chain tree broadcast, for 

8x1 MPI tasks, gradually add a certain amount of dummy computation between two non-

blocking sends. When this dummy computation is large enough, we observed a performance 

improvement on the IBM cluster. It happens only when there is flood of non-blocking sends of 

small message segment size. This also explains why the complete overlapping equation, which 

is supposed to provide the lower hound, still over estimates the performance as shown in Table 

Shared memory broadcast 
gate value 
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Figure 4.14 Gate value and the cost of shared memory broadcast (1x2 MPI 

tasks) on the Intel cluster. 

4.3. 

2. Given a {segment size, overlapping size} pair, it is difficult to determine the performance 

mode without testing. 

We used three equations to describe the performance characteristics of mixed mode chain 

tree broadcast. It would be better if we could condense them into one equation. However, 

it is difficult to determine which equation provide the best prediction for a certain entry in 

the performance matrix, especially the entries in the penalty mode. Through experiments 

we found that the penalty mode is not just affected by memory bandwidth, but also by the 

number of segments, segment size, overlapping size, pipeline mechanisms. Identifying the best 

equation for an entry is almost as complex as tuning mixed mode collective communications. 

4.5.5 More on the Overlapping Penalty 

Through experiments, we also observed that the cost of processing the remaining segment 

smcc(mr) may also contribute to the overall overlapping penalty. In the chain free case under 
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Figure 4.15 The predictions of overlapping mode (equation 4.3). 

penalty mode, the root node posts non-blocking send for the last segment m*, then processes 

shared memory broadcast of the last overlapping segment rns• Right after smcc(ms) time the 

root goes on processing the remaining segment mr. It is possible that the MPI layer is not 

able to gain access to memory bus between two shared memory broadcasts. In that case the 

overlapping penalty is higher than the prediction based on equation 4.6. 

The overall penalty for the overlapping mechanisms depends on algorithms, and is some­

what statistical. For example, for flat, tree broadcast, we found that most of the time smcc(mr) 

contributes to the overall overlapping penalty; for chain tree broadcast, under penalty mode, 

equation 4.6 gives better predictions most of the time. 

An implication from the overlapping penalty is that, when we are designing algorithms 

for overlapping communication and computat ion, we may want to avoid a non-blocking sends 

followed by a huge amount of memory access to retrieve data, for computation. From our 

experimental results, this may in fact degrade the performance of communications. 
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Figure 4.16 The predictions of complete overlapping mode (equation 4.4). 

4.6 Tuning Strategies 

Kielmann et al. [11] and Vadhiyar et al. [6] tuned the performance by directly apply basic 

values (g(m). os(m), or(m), L) on the performance equations of different collective algorithms 

then used the results from their predictions. For mixed mode collective communications, we 

can not take this direct estimate approach. As mentioned in the previous section, it is difficult 

to determine which performance equation to use. We usually have to examine a certain entry 

in the performance matrix in order to determine the best equation. 

Instead of a direct estimate, we take an indirect approach: filter out unnecessary exper­

iments. In this section we discuss several tuning strategies. The tuning strategies are based 

on heuristics; however, they provide much better tuning times and the quality of the tuned 

performance is very close to the results of the exhaustive tuning method. We use the perfor­

mance matrix of mixed mode chain tree to broadcast 8MB message on the IBM cluster(8x16 

MPI tasks) as an example to show how to filter out unnecessary experiments step by step. 

1. Select the entries with large overall overlapping size. If the overall overlapping size is 
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Figure 4.17 The predictions of penalty mode (equation 4.6). 

too small, the performance improvement of overlapping may be very limited. In that case 

we may just select a non-overlapped approach. Our experimental results indicate that the 

overall overlapping size must be at least more than 25% of the total message size in order 

to gain the performance improvement. Based on this observation, for each column in the 

performance matrix, we select only the bottom three elements for testing. The possible entries 

to be examined after this filter is shown in table 4.4. 

2. Reduce the range of experiments. The performance of the overlapping approach should 

not be worse than a non-overlapped approach. Thus the results of a mixed mode collective 

communication without overlapping provides the upper-bound as the acceptable performance. 

For an entry in the performance matrix, if the cost of its inter-node communication is already 

more than this upper-bound, we discard it. This is shown in Figure 4.18. Table 4.5 shows the 

possible entries to be examined after this filter. 

3. Start testing from the smallest segment, it examines only the bottom entry of each 

column. Good performance can be achieved only without overlapping penalty (overlapping or 

complete overlapping mode), and the performance of mixed mode collective communications 
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tax 32% <%% J2#% /%2t 1M 2M 4M 
- - - - - - - - - -

- - - - - - - - - -

X - - - - - - - - -

/wag X X - - - - - - - -

X X X - - - - - - -

- X X X - - - - - -

- - X X X - - - - -

- - - X X X - - - -

- - - - X X X - - -

- - - - - X X X - -

- - - - - - X X X -

20.97^.92 - - - - - - - X X X 

- - - - - - - - X X 

- - - - - - - - - X 

Table 4.4 Possible entries to examine for mixed mode chain tree broadcast 

of 8M after filter 1. x: entries to examine. 

32% /%% J2d% 2.9(7% .9J2& 1M 2M HM 
- - - - - - - - - -

- - - - - - - - - -

. - - - - - - - - - -

- - - - - - - - - -

- - X - - - - - - -

327M - - X X - - - - - -

- - X X X - - - - -

J3J072 - - - X X X - - - -

- - - - X X X - - -

,92j2M - - - - - X X. X - -

- - - - - - X X - -

20.97),92 - - - - - - - X - -

- - - - - - - - - -

- - - - - - - - - -

Table 4.5 Possible entries to examine after filter 2. 
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Figure 4.18 Finding the upper-bound and the experiment range (filter 2). 

under overlapping mode is likely to improve with the increase of overlapping size, (see Figure 

4.15 and 4.16). Thus after applying filter 1 and 2, we start testing from the bottom element 

of the smallest segment column. When the result of the entry is available, we compare it to 

the equations from the performance model. We can identify which performance equation gives 

the best prediction, then use this equation for the other two entries in the same column. If we 

find an entry (i,j) is under penalty mode, we do not process any more entries of lager segment 

size or overlapping size (for example, entries (i+1, j+1 ))• Table 4.6 shows the entries to be 

examined and entries to use prediction equations. 

Table 4.7 and 4.8 show the results of filtered tuning time and the exhaustive tuning time 

to tune our implementations of three mixed mode broadcast algorithms, on the IBM cluster 

using 8x16 MPI tasks and on the Intel cluster using 8x2 MPI tasks. For each {segment size, 

overlapping size} we run it 10 times and then calculate the average. Figures 4.19 shows our 

worse tuning result of mixed mode chain tree on the IBM cluster. The performance loss by 

the filtered tuning is about 5% to 10% from 16KB to 64KB. For binomial t ree and binary tree, 

our filtered tuning results are the same as exhaustive tuning results. 
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16K 32% (%% J2a% .9m 1M 2M 4M 
J02j - - - - - - - - - -

- - - - - - - - - -

jozw - - - - - - - - - -

- - - - - - - - - -

- - <: - - - - - - -

3276% - - <: <: - - - - - -

6,9.936 - - X c c - - - - -

J3J072 - - - X c c - - - -

262Jjj - - - - X c - - - -

,92j2&% - - - - - X - - - -

)(%&976 - - - - - - - - - -

20.97v.92 - - - - - - - - - -

- - - - - - - - - -

#3&*60* - - - - - - - - - -

Table 4.6 Possible entries to examine and calculate after filter 3. X : entries 

to examine, c: entries using prediction equations. 

exhaustively tuning filtered tuning •percentage 
chain tree 3.9* 39 

binary tree. 374 38 
binomial tree. 3.92 41 

Table 4.7 Comparison of tuning time (seconds) on the IBM cluster, 8x16 

MPI tasks, 16K to 8M 

exha.ust.ive.ly tuning ji.li.ered tuning percentage 
chain tree 224 17 7.j% 

binary tree 267 22 &2% 
binomial tree 14 J. 6% 

Table 4.8 Comparison of tuning time (seconds) on the Intel cluster, 8x2 

MPI tasks, 4K to 8M. 
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Comparison of exhaustive experiments and filtered experiments of chain tree broadcast using 8x16 MPI tasks on IBM cluster 
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Figure 4.19 Performance comparison of exhaustive tuning and filtered tun­

ing of mixed mode chain tree broadcast. 

Even if we are only tuning for total overlapping (overlapping size equals segment size), we 

can still reduce significant amount of tuning time. For example, on the IBM cluster using 

8x16 MPI tasks, to find the best setting for binary tree broadcast on 8MB message, exhaustive 

tuning takes more than 20 seconds (examine 12 entries). Using filter 2 and 3 we need only less 

than 6 seconds to find the optimal setting (examine 4 entries). 

4.7 Summary 

Mixed mode collective communications provide better performance over the other ap­

proaches on SMP clusters; however, without a good performance model, exhaustively testing 

every setting is the only strategy to tune the performance of mixed mode collective communi­

cations on different SMP platforms. It is not only time consuming but also impractical. 

In this chapter we first explored the characteristics of mixed mode collective communica­

tions. We showed that the performance of mixed mode collective communications does not 

always improve or decrease with the increase of overlapping segment size. We then developed 

Exhaustive experiment —t-
filtered —x-
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a. performance model that is able to describe these characteristics. The model is different from 

the other performance models for collective communications: it considers both shared memory 

and point-to-point collective communications. In this model we also introduce "overlapping 

penalty", which can happen in the mixed mode collective communications. Based on the per­

formance model and experimental results we developed several tuning strategies; our results 

show that the strategies can reduce the amount of tuning time up to less then 10% of exhaus­

tive tuning. The performance model and tuning strategies outlined in this chapter have been 

accepted as a technical conference paper at Super computing 2005 [116]. 

In the next chapter we will discuss how to put every modules developed in this dissertation 

together as the foundation to build an automatic tuning system for collective communications 

on SMP clusters. 
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CHAPTER 5. MICRO-BENCHMARKS AND TUNING PROCEDURES 

5.1 Introduction 

In the previous chapters several new methods are developed for collective communications 

on SMP clusters; these methods include: portable optimizations using the SMP architecture, a 

performance model to predict the performance of mixed mode collective communications, and 

several tuning strategies. In this chapter we will discuss the procedures to build a practical 

automatic tuning system, and how to put the developed methods into the structure of such a 

system. 

5.2 Tuning Points for a Parallel Application 

Two existing automatic tuning systems for collective communications, MagPIe and ACCT, 

provide tuning strategies base on performance models, which in turn are based on several net­

work parameters. MagPIe provides supporting tools [12] to evaluate gate value, send overhead 

and receive overhead on a target platform. ACCT does not provide such tools; the tuning 

parameters and tuning decisions must be hand coded then re-compile their programs on a 

target platform. 

The two systems provide several good approaches to design automatic tuning systems. 

However, many tuning processes are left to a user. Consider the mixed mode collective commu­

nications we developed in the previous chapters. The tuning parameters include {algorithms, 

implementations, segment size, overlapping size, shared memory buffer size, number of shared 

memory buffer, nodes, processors per node}. If we provide only the tunable implementations 

of a collective communication to users, they have to find the optimal values for parameters 

by themselves. Without supporting tools for tuning, a user can only exhaustively test every 
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Figure 5.1 Possible tuning points, and relative allowed tuning time for col­

lective communications. 

possible configuration to find the optimal setting. 

For a practical automatic tuning system, it should include tunable implementations of col­

lective communications and tools to tune the performance for users. The tuning tools can 

be regarded as a set of micro-benchmarks for collective communications. The functionali­

ties of micro-benchmarks include: gathering basic information of a target system, predicting 

performance of implementations base on the collected system information, filtering out un­

necessary experiments and selecting a minimum set of implementations that requires runtime 

experiments. 

To develop such a system, we first, identify the "tuning points" during the execution of a 

parallel application where we can time the performance of collective communications. There 

are three tuning stages during the execution of a parallel application where we can tune the 

parameters for the collective communication implementations. 

Stage 1: off line tuning. Before an application starts; the micro-benchmarks can be used 

to evaluate basic information and select the implementations for runtime testing. 

Stage 2: on-line tuning stage one. After an application is started, but before any compu­

tation or communication is executed. The run time environment is set and we can start, the 

testing procedure to find the best implementation of a collective communication. 

Stage 3: on-line tuning stage two. During the runtime of an application, the performance 

of collective communications or applications can be gathered, and adjustments can be made 

according to the interactions between collective communication library and applications. 

Figure 5.1 shows possible tuning stages and relative tuning time for each stage in a parallel 

application. The micro-benchmarks for each tuning stage are different since the purpose and 
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the acceptable tuning time are different from stage to stage. The tuning results from an earlier 

stage are provided as the base for the next tuning stage. We will discuss the three tuning 

stages in the following sections. The methods developed in this dissertation are for the tuning 

in the off-line tuning stage and the on-line tuning stage one. 

5.3 Off-line Tuning - Tuning Before an Application Starts 

At this stage, the system uses the micro-benchmarks to gather basic network information 

such as gate value, send overhead and receive overhead on the inter-node layer. On SMP 

clusters, the performance of shared memory operations and shared memory collective commu­

nications should also be gathered during this stage. 

Since this is intended to be tested off-line, the tuning time can be a couple hours and use 

only a small set of nodes. The goal is to use only a few nodes, within limited amount of time 

to provide filtered information for the next tuning stage. 

The micro-benchmarks in this stage can be divided into three smaller sets, mapped onto 

the three layers in our programming model. They are discussed in the following subsections. 

5.3.1 Micro-benchmarks for the Intra-node Layer Collective Communications 

The micro-benchmarks on this layer explore the characteristics of intra-node layer collective 

communications designed with the basic shared memory operations. Besides the performance 

of individual shared memory operations, we also need the performance of a shared memory 

collective communications since we use these values for performance predictions of mixed mode 

collective communications. 

The micro-benchmarks on the intra-node layer should provide the following information: 

(1). Overhead of intra-node communications through NIC and shared memory. 

(2). Bandwidth of the intra-node layer communications. 

(3). The best shared buffer size for shared memory operations. 

(4). The best number of pipeline buffers. 

(5). The cost of individual shared memory operations. 
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Figure 5.2 Block diagram of the tuning procedure on the intra-node layer. 

(6). The cost of shared memory collective communications. 

(I) and (2) can be measured using the tools provided by MagPIe, (3) to (6) are developed 

in this research. 

The block diagram of the tuning procedure for the intra-node layer is shown in Figure 5.2. 

We first need to find out what is the best size for a shared buffer, and the best number of 

shared buffers for pipelining; those methods are described in Chapter 2. When the two data 

are available, we can evaluate the cost of shared memory collective communications. If shared 

memory send and receive are available on the target systems, we can also measure the cost 

of inter-node collective communications algorithms using shared memory send and receive. 

We also need to measure the performance of collective communications using interconnect ion 

networks within an SMP node. 

When all the results are available, we can decide the range to use a certain implementation 

for a collective operation. This part requires only one SMP node, and can be completed within 

a short time. 
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5.3.2 Micro-benchmarks for the Inter-node Layer Collective Communications 

The methods to explore network characteristics on this layer are extensively explored in 

many literatures. For automatic tuning, several key information are required: the segment 

size for a pipelined implementation, the switching point between blocking and non-blocking 

implementations, the testing range for parameters of an implementation, and the performance 

predictions to filter out unnecessary experiments of the implementations that do not provide 

good performance. 

Overall, on the inter-node layer, the micro-benchmarks should provide the following: 

(1). Overhead, gate value, bandwidth and latency of the inter-node layer communications. 

(2). Switching point between latency-bound and bandwidth-bound communications. 

(3). Performance prediction of an inter-node layer collective communication algorithm base 

on information such as latency and overhead. This can filter out some unnecessary experiments. 

(4). The proper range of segment size for run time testing. This is for pipelined implemen­

tations. 

MagPIe provides the information for (1). For (3) we can use the tuning strategies in 

MagPIe or ACCT. These strategies can be designed as modules and incorporate them into the 

tuning system. The data for (2) and (4) can be developed base on the information provided 

by MagPIe tools. 

The block diagram of the tuning procedure for the inter-node layer is shown in Figure 5.3. 

We first use the tool provided by MagPIe to extract the results of gate value, send overhead, 

receive overhead and latency on the target systems, then we calculate the performance of 

collective communications on the inter-node layer. For the latency bound communications, we 

use Hockney's model for performance prediction; for bandwidth bound communications, we use 

either P-LogP model or the performance model in ACCT. In this dissertation wc implemented 

performance prediction routines for only a few collective operations; the performance predict ion 

modules of ACCT and MagPIe are scheduled to release with OpenMPI and we expect to be 

able to use those modules without too much modifications. 

When the performance predictions of collective communications and switching point be-
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Figure 5.3 Block diagram of the tuning procedure on the inter-node layer. 

tween latency/bandwidth hound communications are available, we can set the range for ex­

periments in the next tuning stage: run time tuning stage one. 

5.3.3 Micro-benchmarks for the Inter-node/Intra-node Overlapping Mechanism 

Exploring the cost of overlapping and predicting the performance of a mixed mode col­

lective communication after overlapping inter-node/iutra-node communications are the major 

functionalities of micro-benchmarks in this group. 

(1). Overlapping penalty when overlapping layers of communications. 

(2). The range for run time testing, given a {segment size, overlapping size} pair for a 

particular mixed mode collective communication. 

(3). Performance prediction of a certain implementation of a mixed mode collective commu­

nication. For example, given the cost of a shared memory gather operation, a shared memory 

broadcast, operation and an inter-node ring all-gather operation, we should be able to predict, 

the performance of the upper-bound of a mixed mode all-gather implementation. 

The tuning procedure is shown in Figure 5.4. We need the information from both inter-

node and intra-node micro-benchmarks. First we need the latency of shared memory collective 

communications and inter-node collective communications to calculate the c.ost, of mixed mode 
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collective communications without overlapping, and we use this information to determine the 

testing points in the filter 3 as discussed in the previous chapter. We then examine these 

testing points, and calculate the other settings by using the results from runtime experiments, 

and find the setting that gives the best performance. 

The tuning procedures discussed in this section is only a guideline; it shows how to put the 

methods developed in this dissertation into tuning procedures for an automatic tuning system. 

Many information discussed in the earlier chapters can be used for different purposes but they 

are not shown in our tuning procedures. For example, by measuring the cost of chain tree 

broadcast and compare it with binomial tree scatter, we can estimate that the performance of 

chain tree scatter can be very poor and is not worth implementing. 

The information from off-line tuning should be of the table format, with each row indicating 

the testing range for an implementation. The first runtime tuning stage uses this table to fine 

tuning the performance before starts any computation or communication for an application. 

5.4 Online Tuning One - Tuning Before Application Computation Starts 

At this stage, the system should use the information gathered from off-line micro-bench marks 

and runtime information such as number of processes, and possible message size, to find the 

proper implementations for a collective operation. 

As an example, on IBM SP system using IBM's propriety network and running IBM's MPI, 

from an off-line micro-benchmark we can know that the possible switching point between 

immediate mode and rendezvous mode is 4K. This suggests the smallest segment size for 

blocking/non-blocking implementations is around 4K. Exactly which value is the best for an 

algorithm or an implementation has to be determined based on the number of processes given 

at runtime. At this stage we may want to test the best blocking implementation of a. certain 

collective operation from IK to 16K, doubling testing size each time, and then test a few non-

blocking implementations using the same testing range. When the results are available we can 

find the exact switching point. 

These experiments must be designed in a way that they can be completed in a very short 
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time, and completing all required experiments should be no more than a few minutes. We 

want the cost of this tuning to be subsumed into the overall runtime of a parallel application. 

Obviously, the tuning time in this stage depends on the quality of the off-line tuning stage. 

One research topic that may be useful in this stage is topology discovery [61, 29, 30, 62]. 

While exploring topology is a research topic in GRID computing or distributed computing, 

our focus is a cluster of SMP nodes, and the difference of node-to-node latency within an 

SMP cluster may not be large enough to take topology into consideration unless the physical 

network is constructed in a certain topology. One such cluster is the SC1NK cluster at SCL. 

We did not take topology into account in this research. 
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Also, it is desirable that the results of the runtime experiments can be stored in the sys­

tem so in the future if another application is requesting the same configuration, the system 

can directly extract the required information without doing the same experiment for every 

application. 

5.5 Runtime Tuning - Interacting with Parallel Applications 

There are many research topics in this part such as gathering the run time performance 

data, setting the threshold for tuning, and interacting with applications and making runtime 

tuning decisions [57, 56, 59, 60, 58]. Some of those may impact the runtime performance 

of collative communications; for example, the computation load on a node may also affect 

the performance of its communications, as shown in the work by Sosonkina et.al [57. 56]. 

Incorporating this runtime information into our system can be one of our future research 

topics. 

Active Harmony system [63, 64, 65, 66] is able to tune the performance of a system during 

runtime, and can handle a large number of tuning parameters. The basic assumption of 

Active Harmony is that the effect of each tuning parameter is independent, to the overall 

performance; this is not the case in tuning collective communications. However, some of the 

designing methodologies such as exploring priority of each tuning parameter [66] can still be 

considered for future research in this system. 

Designing an automatic tuning system that interacts with applications is a long-term re­

search and requires cooperation of several research projects. To our best, knowledge, there is 

no existing collective communication library with the capability to interact with applications 

during run time. This is one of our research topics in the future. 

To sum up, the tuning strategies for our system are: 1. Use off-line tuning to minimize 

the runtime experiments, then 2. Use the results from runtime experiments to find the best 

setting. 

If the quality of off-line tuning is good enough, the cost of run-time tuning can be subsumed 

into the runtime of parallel applications. This extends the idea of MagPIe into the run time 
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of a whole parallel application instead of a single collective communication, and is shown in 

figure 5.5. 

5.6 Summary 

To design a, practical automatic tuning system, not only do we need tunable implemen­

tations of collective communications, but also tools that help users automatically tune for 

the optimal performance. This chapter discusses the micro-benchmarks for different timing 

stages, and gives a guideline of how to put the developed methods in this dissertation into 

tuning procedures. The system integration for this system will be the future work for ATCOM 

system. 
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CHAPTER 6. CONCLUSION 

Optimizing collective communications in a parallel machine is a challenging design task that 

requires the integration of modeling, system analysis, parameter tuning, and benchmarking 

methods plus a good optimization strategy. Because of the degree of complexity, automatic 

tuning system is highly desired, particularly for SMP clusters. Existing approaches are not 

designed for SMP clusters, and our experimental results have shown that their performance is 

not close to the optimal one. 

In this research, we have built an infrastructure for designing an automatically tuned sys­

tem for collective communications on SMP clusters. We first constructed a. programming 

model for designing collective communications on SMP clusters. The programming model is 

based on a well understood communication model, which includes both point-to-point based 

communications and shared memory concurrent memory access feature. Using this model, 

on the intra-node layer we have successfully developed a shared memory collective commu­

nication library that utilizes the concurrent memory access feature of the SMP architect ure. 

It provides significant performance improvement over the other point-to-point based collec­

tive communication libraries. We then constructed a generic mechanism to overlap inter-node 

and intra-node collective communications. These two components construct the generic pro­

gramming model for designing collective communications on SMP clusters. Although the two 

methods have been studied in platform-specific optimizations, we have successfully adapted 

them into a platform-independent automatic tuning system. Its performance is significantly 

better than the platform-specific ones. 

The mixed mode collective communications involve complex interactions between layers 

of communications, and the performance characteristics of these types of communications 
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are very different from those of the point-to-point, based ones. We explored these special 

characteristics, and developed a performance model that takes into account those interactions 

between communication layers. Several performance equations are required to describe the 

characteristics of a mixed mode collective communication, and the existing tuning strategies 

can not be directly applied to tune the performance of mixed mode collective communications. 

We have developed several tuning strategies that are based on heuristics. The experimental 

results showed that the tuning time can be reduced dramatically from the brute force exhaustive 

search while providing almost the same tuning quality. We have also showed how to organize 

the developed methods into a set of micro-benchmarks and procedures to form the building 

blocks of a practical tuning system. 

While the optimizations outlined in this dissertation do not follow the exact definition of 

"message passing", it is still based on a model that can be applied to most SMP clusters. With 

proper programming techniques and collaborations with the MPI developers, it is possible to 

incorporate our library into the existing MPI implementations, and the existing MPI based 

applications can use this library without any modification. 

Automatic tuning communication systems are vital to the performance of time consuming, 

communication intensive applications. A computation intensive application may benefit very 

little, or none at, all, from an automatic tuning communication system. For example, in 

a parallel matrix multiplication, each computation stage requires 0(n3) of computation time 

while each communication stage requires only 0(n2) communication time. The communicat ion 

time contributes only a small fraction of t he total application run time thus it, does not, demand 

optimization of communications. A last and communication intensive application may also 

benefit very little from the tuning system since the tuning time may exceed the total run 

time of t he application. Our rationale in using an automat ic tuning communication system is 

that, for a time consuming, communication intensive application that runs days, weeks or even 

months, it, needs to use only a few minutes for performance tuning and the overall performance 

can be improved. The approaches of the existing tuning systems are only for single processors 

clusters. With the optimized collective communications, the new performance model and 
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tuning strategies, we have extended automatic tuning communication systems to work on 

multi-processor clusters. 

There are several directions for the future work of this research. A possible short-term 

project is to extend the current library to include more collective operations and explore more 

tuning strategies. While our tuning strategies show very promising tuning time and quality on 

our testing platforms, we want to verify our approaches on more platforms and explore more 

tuning strategies for different kinds of SMP clusters. 

One possible long-term project is to introduce an interacting mechanism between the tuning 

system and the applications. As mentioned in the last chapter, this may require cooperation 

between several research projects. Another possible long-term project is to enhance our pro­

gramming model and performance model for different architectures. For example, if there is a 

processor dedicated to communications in every SMP node, how should we change our perfor­

mance model? Will there still be an overlapping penalty? Do we need a different programming 

model to utilize this architecture? 

With more and more complex parallel architectures available, designing automatic tuning 

systems for the parallel computers becomes even more difficult. Currently, we are seeing two 

opposing trends. Researchers are seeking approaches to reduce the programming complex­

ity and burden in designing parallel applications. System architectures are becoming more 

complex. The trend of current CPU architectures, multi-core CPUs, will become the main 

stream of high performance computing hardware. Designing efficient parallel applications on 

this complex architecture is still an open problem. 

One approach to design efficient parallel applications is to re-design the applications on new 

architectures. This approach is time consuming as well as error prone. It is quite possible that, 

by the time the new design is completed, there would be another new architecture available. 

Another approach, which we have utilized, is to provide another layer of abstraction, and 

design tunable approaches and thus performance enhancement on this layer. With more com­

plex memory hierarchies and interconnection technologies appearing in new parallel computers, 

designing these "virtual architectures" is also a research topic. On one hand, this virtual ar­
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chitecture should be detailed enough so the developers can use it to design more efficient 

applications; on the other hand it should not be too detailed as to inhibit portability. 

The research in this dissertation is based on a more detailed "virtual architecture" for SMP 

clusters than the point-to-point based one used by existing message passing libraries, and the 

results have shown portability and performance improvement can be achieved on different 

SMP clusters. The results are encouraging for the design of tunable applications on future 

large-scale, complex parallel computers. 
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APPENDIX MIXED MODE MATRIX MULTIPLICATION 

Introduction 

In modern clustering environments where the memory hierarchy has many layers (dis­

tributed memory, shared memory layer, cache, ...), an important question is how to fully 

utilize all available resources and identify the most dominant layer in certain computation. 

When combining algorithms on all layers together, what would be the best, method to get the 

best performance out of all the resources we have? Mixed mode programming model that uses 

thread programming on the shared memory layer and message passing programming on the 

distributed memory layer is a method that many researchers are using to utilize the memory 

resources. In the research in this appendix, we take an algorithmic approach that uses matrix 

multiplication as a tool to show how cache algorithms affect the performance of both shared 

memory and distributed memory algorithms. We show that with good underlying cache al­

gorithm, overall performance is stable. When underlying cache algorithm is bad, super-linear 

speedup may occur, and increasing number of t hreads may also improve performance. 

The content, of this appendix was published in '2002 IEEE Cluster Computing Conference. 

From this project we can observe the complex procedure to re-design a parallel algorithm with 

mixed mode programming. We investigated this approach before conducting the research on 

improving MPI collective communications. 

Memory Hierarchies in the modern clustering environments 

Figure A.l shows the memory hierarchy that exists in most nodes of modern clustering 

environments. Globally, many nodes are linked together by a high-speed network; inside each 
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node there may be many processors; along with each processor memory access is either to a 

high speed memory unit "cache" or the low speed "main memory". 

In our mixed-mode programming model we use message passing interface, MPI, for the 

dat a communication between the global nodes. Inside each MPI process we have two choices, 

one is to use POSIX threads for creating threads, one or many threads may belong to the 

MPI process mapped to the node. The other choice is again to use MPI for local processes 

mapped to all processors of the node. Inside each process we use different algorithms that 

utilize the cache. Another option for threads that was not explored in this project was to use 

the OpenMP standard. Based on the specific programming model, we selected several matrix 

multiplication algorithms on each layer and implemented them. 

Bova et. al., [97] determined that, "On a 100-CPU machine, using 100 MPI workers to 

perform a. 100-component harbor simulation is inefficient due to inappropriate load balance. 
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It would be more efficient to have 25 MPI workers create four OpenMP threads for each 

assigned wave component." In our experiments, we show that even in a perfectly load balanced 

computation such as matrix multiplication, the overall mixed mode performance is highly 

affected by cache algorithms. 

Our testing platform is the IBM SP system at the National Energy Research Scientific 

Computing facility [77]. It is a distributed-memory parallel supercomputer with 184 compute 

nodes. Each node has 16 POWER3+ processors and at least 16 GBytes of memory, thus at 

least 1 GBytes of memory per processor. Each node has 64 KBytes of LI data cache and 

8192 Kbytes of L2 cache. The nodes are connected to each other with the IBM proprietary 

switching network. 

Cache layer matrix multiplication algorithms 

The cache based algorithms used in our research vary from those that have high cache misses 

to those that effectively use cache. This is by no means a complete coverage of all possible 

cache algorithms but is representative of those used and taught in the community. Also there 

is no performance optimization beyond the definition of each algorithm such as what is done 

in the ATLAS suite [98] where an optimal implementation is produce by balancing tradeoffs 

between operation count, memory access patterns, etc,, and computed performance metrics. 

Different optimization techniques can also be found in Crawford and Wadleigh [99] or Dowd 

and Severance [100]. 

Simple three loops algorithm 

Figure A.2(a), simple three loops algorithm: the figure shows the memory access pattern 

of this algorithm. This algorithm will incur the most cache misses among all other cache algo­

rithms introduced here. However, it is the algorithm with fewest instruction count. LaMarca 

and Ladner [101] as well as Chat terjee et. al. [102], mention that for a cache algorithm to get 

the best performance, the recursion should terminate whenever a block of data fits into cache 

and then call the algorithm with fewest instruction count. In our implementation, whenever 
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Figure A.2 Pictorial Representation of Cache Level Algorithms. 

data blocks fit completely in cache, this algorithm is used. 

Blocking C algorithm 

Figure A.2(b), compute matrix C block by block. Since the algorithm computes according 

to the square patch of C, the corresponding portions of matrices A and B are not required 

to be square. As the matrix dimensions increase, the size of A and B patches also increase 

and thus incur more cache misses. This algorithm performs well when the sizes of matrices 

are small. If matrix B is transposed first in order to access elements in B consecutively, the 

performance is much better. The results presented in this work do not transpose matrix B. 

Blocking A algorithm 

Figure A.2(c), fix a block of A or B: the figure outlines the memory access order of this 

algorithm. The algorithm keeps a square patch of matrix A in the cache as long as possible. 

For example, block A(l) is computed with block B(l) and result put into C(l), then A(l) is 
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Figure A.3 Results of Cache Based Algorithms. 

multiplied by B(2) and stores the data in C(2). A(l) is then swapped out and replaced by 

A(2) to multiply B(3) and B(4), and so on. 

Transform and blocking A algorithm 

Figure A.2(d), transform then blocking A: The memory partitioning scheme and computa­

tional order for this cache algorithm is the same as the previous algorithm. The only difference 

is thai the layout of all three matrices are transformed before computation starts. The layout 

of elements in each block is made consecutive by creating a block that is small enough to fit 

into cache and copying the appropriate portion to the newly allocated block. 

Recursive algorithm 

Figure A.2(e), recursive layout: Chatterjee and coworkers [102, 103] and Frens and Wise 

[104] describe the recursive layout of matrix multiplication that the data is transformed into 

layout according to different space-filling curve order [105]; then computations are done recur­

sively according to that order. Because of the recursion, data has to be a power of 2. Different 

methods of Chatterjee et. al., [102, 103] and Frens and Wise [104] are used to handle the case 

when data size is not a power of 2. We implemented a simple version of the "U layout" which 
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works on only square matrices. The blocking shell takes care of the case when data size are 

not a power of 2. 

Strassen's algorithm 

In theory Strassen's algorithm [106. 107] has better run time for matrix multiplication; it 

use additions and subtractions to reduce the times for multiplication. The algorithm processes 

data in small blocks recursively, which make it implicitly cache efficient. 

Strassen's algorithm, cache oblivious algorithm [108] or Dag-consist, algorithm [109] have 

the advantage that the programs do not need a threshold parameter to adjust the block size. 

In our experiments we found that recursion down to a single element reduced the performance 

and terminating the recursion at, even a small block size increased the overall performance. 

For all of our implementations, we assign a cache size for each block of 10 Kbytes, which is 

available for most, computers at this point in time. 
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Result and performance analysis of cache algorithms 

Algorithms such as Strassen's algorithm work on square matrices only, and the dimension 

has to be a power of 2 to do recursion. When the dimension is not a power of two or the shape 

of matrices are not square, we use another blocking shell to compute the matrices with square 

blocks, and leave the rest parts that are not square to simple 3 loops algorithm. Figure A.2(f) 

shows this blocking shell method. In our implementation, three algorithms use this block shell 

- Strassen's algorithm, recursive algorithm and transform and blocking A algorithm. 

Our results are shown in Figures A.3. In Figure A.3(a). when the matrix size is a power of 2, 

Strassen's algorithm shows the best performance. However, in a more realistic situation when 

we have to deal with the dimensions that are not a power of 2, or the shapes of matrices are not 

square, the cache misses caused by the block shell method and copying overhead reduces the 

performance of three algorithms - transform and blocking A, recursive algorithm and Strassen's 

algorithm. The best performing algorithm is to blocking A algorithm. 

Programming issues 

One issue to keep in mind is that, the result here is not to show that one algorithm is 

absolutely better than the others. It just means in our implementation, one algorithm shows 

better performance than the other. During our research we determined that programming 

cache algorithms is a nebulous task. The same algorithm be implemented in different ways 

giving a totally different performance. We use these algorithms, coded directly as describe 

above, simply as a basis to combine with algorithms in multiple layers of the memory hierarchy. 

We do not give any conclusion about which algorithm is optimal for the cache layer. 

Shared memory layer matrix multiplication algorithms 

We outline four possible shared memory matrix multiplication algorithms that can be easily 

implemented in the Pthreads programming model, represented in Figure A.4. This is by no 

means an exhaustive set of shared memory algorithms but representative of those that are used 

by the community. 
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Overlapping matrix B 

Figure A.4(a), overlapping matrix B: the algorithm divides matrix A into several rectangle 

blocks horizontally according to the number of threads. Each thread computes certain rectangle 

block of matrix A with whole matrix B and produces a complete contribution to a portion of 

matrix C. The algorithm has the possibility of causing read contention when different threads 

try to read matrix B. 

Non-overlapping algorithm 

Figure A.4(b), non-overlapping: the algorithm divides matrix A horizontally and matrix B 

vertically into blocks. Each thread first computes a block of matrix A multiplied by a block 

matrix B thus produces a full contribution of a square block of matrix C. In the next stage 

every thread still use the same block of matrix A, but shifts to another block of matrix B, 

thus producing another full contribution to a different square block of matrix C. In this way, if 

all threads are executed concurrently then different threads have less chance of accessing the 

elements of matrix B at the same time when the number of threads is less than the number of 

blocks of A and B pairs. 

Blocking algorithm 

Figure A.4(c), blocking: the algorithm divides all three matrices into smaller square blocks, 

and each thread computes a square block of matrix A with a square block of B thus producing 

a partial square contribution to matrix C. The block computation order is the same as ele­

ment computation order in simple 3-loop algorithm. Care must be taken to update matrix C 

atomically with mutex locks or assign the contributions required for the full block of C being 

computed to a single thread. 

Transform and blocking algorithm 

Transform and blocking: the algorithm has the same computation order and work on the 

same shapes of matrices as the previous algorithm, except before the computation begins, all 
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Figure A.5 Results of Shared Memory Based Algorithms 
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three matrices are transformed into blocks of consecutive data as in the cache algorithm delin­

eated in section 6, and each thread works on three square patches with consecutive elements. 

Results and performance analysis of shared memory algorithms 

Our results are presented in Figure A.5(a) to A.5(f). Figure A.5(c) to Figure A.5(f) show 

that, with a good underlying cache algorithm, the performance of all four shared memory 

algorithms are similar. An increase in the number of threads does not substantially affect the 

overall performance. 

On the other hand, Figure A.5(a) and figure A.5(b) show that, a "bad" cache algorithm 

combined with a shared memory algorithm that is insensitive to cache, has poor performance as 

the number of threads is increased. However, when a cache sensitive shared memory algorithm 

is combined with a "bad" cache algorithm, there is a performance gain with an increased 

number of threads. The performance can almost meet that of a good cache algorithm. This 

is due to the fact that as we increase the number of threads the smaller block size per thread 

actually fits into cache thus reducing the cache misses. 

Distributed memory layer matrix multiplication algorithms 

Here we focus on two common distributed matrix multiplication algorithms. Many more 

are available but these represent a common denominator of many algorithms. 

Broadcasting algorithm 

Two dimensional broadcasting algorithm: According to the number of physical nodes and 

physical grid, if the physical grid is p x q, then matrices are partitioned into least common 

multiples of p and q parts. Each node takes ( urns broadcast the part; of matrix A vertically or 

B horizontally or both, and computes according to the data it receives. 
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Cannon's algorithm 

The algorithm is described in almost every parallel algorithm book such as Kumar et. al., 

[110]. We use a generalized Cannon's algorithm similar to Lee and Fortes [111] instead of 

the original algorithm that requires the number of processors to form a certain square. In our 

implementation, we first form a grid using the available processors, then depending on the 

shape of the grid, we distribute data accordingly. If the grid is square, we distribute data as 

in Cannon's original algorithm. If the grid is rectangular, find the least common multiple of 

two dimensions, use the least common multiple as the dimension of a virtual square grid and 

then distribute data according to this virtual grid. 

Result and performance analysis of Distributed Memory and Mixed Algorithms 

In our observations, when using the same number of processors, MPI algorithms exhibit, 

better performance than Pthreads algorithms when the underlying cache algorithm is "bad." 

The reason is that, the distributed memory MPI algorithms always partition data into smaller 

blocks while shared memory algorithms work on a bulk data, and thus causing more cache 

misses. 

However, with good underlying cache algorithm, the choice of how many MPI tasks com­

bined with how many threads does not seem to be so important. Figure A.6(a) to A.6(f) 

show our result of computing matrices of size 2000x2000 using 6 and 12 nodes, with different, 

combinations of algorithms, MPI tasks and thread tasks. 

Figure A.6(a) and A.6(b) show that when bad cache algorithm combines with distributed 

algorithms or bad cache algorithm combines with shared memory algorithms, run time is not 

stable and doubling number of processors sometimes has super-linear speedup. Figure A.6(c) 

and A.6(d) show mixed algorithms of three layers and doubling number of processors have a 

speedup of 2. Figure A.6(e) and A.6(f) show mixed algorithms together and doubling number 

of processors when super-linear speedup happen again. With good underlying cache algorithm, 

performance are stable. 

From Figure A.6(a) to A.6(f), we observed that, doubling t he number of processors, good 
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tributed Memory Layer 

cache algorithms give speedup of two while bad cache algorithms combines with algorithms 

from other layers that do not partition data small enough, also give speed up of two. On the 

other hand, performance of bad underling cache algorithms have super-linear speedup when 

data is partitioned small enough by algorithms from the other two layers. 

These results show that, without a good cache algorithm, timings fluctuate. Different 

combinations of MPI tasks and numbers of threads exhibit different performance. The main 

dependence is on how the algorithms divide data and thus make good use of cache as the chunk 

size decreases. On the other hand, if the underlying cache algorithms is "good," the way data 

is partitioned matters much less. 

We use a simple model to show the effects of cache algorithms: 

1'Total ~ -Tccnnp 4' 

['(•omm 
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^Penalty 

where Trotal is the total time, Tcomp is the computational time, Tcomm is the communication 

time, and Tpenaity is the time associated with cache misses. Tcomp + Tcomm is the normal 

"total time" for many parallel computational models as described in Kumar et. al., [110], and 

for Tcamp + Tpena[ty model we refer to the two layers model of Matteo et. al., [108]. For matrix 

multiplication, communication cost is at most 0(n2) while cache misses range from 0(n2) to 

0(n3) depending on the algorithms. When data size are small, we can almost ignore cache 

misses penalty; when data size increases, cache misses penalty becomes a factor that affects 

total run time. When the data size is huge, 0(n3) cache misses is now the bottleneck for the 

performance. 

Figure A. 7 shows the fraction of improvement coming from modifying the underlying cache 

algorithm for the distributed memory algorithms. We measured the total performance gain 

and the percentage that distributed layer algorithms and cache layer algorithms contribute. 

The data size are from 1000 to 16000, using 64 nodes. Shared memory algorithms are not 

used here since we don't have a node of 64 processors. As shown in figure A.7. when data size 

are small, all data block can fit into cache, the major improvement is from good distributed 

algorithms that reduce communication time. When data size increase, data block size also 

increase, incurring more cache misses, and cache algorithms became dominate contribute!' of 

performance gain. Eventually, cache layer algorithms contribute almost all performance gain 

when data size are very large. 

Conclusion 

In this paper we use different matrix multiplication algorithms on different layers to show 

how performance will be affected in mixed mode programming without a good cache algorithm, 

even when the work load is perfectly balanced. Since the core of parallel computations are still 

sequential computations, to improve the overall performance, not only do we need a model 

to utilize memory on every layer, but also good sequential core algorithms to achieve high 

performance. From our experiments, we believe that cache algorithms play a dominate role in 
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many high performance computations, especially when processing large segments of data. If 

the computations is divided into many stages, and each stages only works on small data size, 

improving distributed algorithms improve the performance since cache misses do not matter 

much on computing small data size. On the other hand, if the computation has to work on 

large chucks of data, it is important to combine a good cache algorithms with an increase 

in the number of processors. Furthermore, parallel algorithms with "bad" underlying cache 

algorithms utilized in a mixed programming mode, the saturation of the thread space beyond 

the total number of computing threads equal to the number of available processors should 

provide a modest performance enhancement. 
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